

User Manual for XL+ OCS

MAN1106-01_XL+_UserManual

HE-XP7E0, HE-XP7E2, HE-XP7E3, HE-XP7E4, HE-XP7E5, HE-XP7E6

PREFACE

This manual explains how to use the XL+ OCS.

Copyright© 2017 Horner APG, LLC, 59 South State Avenue, Indianapolis, Indiana 46201. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior agreement and written permission of Horner APG, Inc.

All software described in this document or media is also copyrighted material subject to the terms and conditions of the Horner Software License Agreement.

Information in this document is subject to change without notice and does not represent a commitment on the part of Horner APG.

Ethernet[™] is a trademark of Xerox Corporation.

MicroSD[™] and CompactFlash are registered trademarks of SanDisk Corporation.

For user manual updates, contact Technical Support:

North America:

Tel: (+) (317) 916-4274 Fax: (+) (317) 639-4279

Web: http://www.hornerautomation.com

Email: techsppt@heapg.com

Europe:

Tel: (+) 353-21-4321-266 Fax: (+) 353-21-4321-826

Web: http://www.horner-apg.com
Email: tech.support@horner-apg.com

LIMITED WARRANTY AND LIMITATION OF LIABILITY

Horner APG, LLC, ("HE-APG") warrants to the original purchaser that the XL+ (HE-XP) OCS module manufactured by HE-APG is free from defects in material and workmanship under normal use and service. The obligation of HE-APG under this warranty shall be limited to the repair or exchange of any part or parts which may prove defective under normal use and service within two (2) years from the date of manufacture or eighteen (18) months from the date of installation by the original purchaser whichever occurs first, such defect to be disclosed to the satisfaction of HE-APG after examination by HE-APG of the allegedly defective part or parts. THIS WARRANTY IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES EXPRESSED OR IMPLIED INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE AND OF ALL OTHER OBLIGATIONS OR LIABILITIES AND HE-APG NEITHER ASSUMES, NOR AUTHORIZES ANY OTHER PERSON TO ASSUME FOR HE-APG, ANY OTHER LIABILITY IN CONNECTION WITH THE SALE OF THIS XL+ OCS module. THIS WARRANTY SHALL NOT APPLY TO THIS XL+ OCS module OR ANY PART THEREOF WHICH HAS BEEN SUBJECT TO ACCIDENT, NEGLIGENCE, ALTERATION, ABUSE, OR MISUSE. HE-APG MAKES NO WARRANTY WHATSOEVER IN RESPECT TO ACCESSORIES OR PARTS NOT SUPPLIED BY HE-APG. THE TERM "ORIGINAL PURCHASER", AS USED IN THIS WARRANTY, SHALL BE DEEMED TO MEAN THAT PERSON FOR WHOM THE XL+ OCS module IS ORIGINALLY INSTALLED. THIS WARRANTY SHALL APPLY ONLY WITHIN THE BOUNDARIES OF THE CONTINENTAL UNITED STATES.

In no event, whether as a result of breach of contract, warranty, tort (including negligence) or otherwise, shall HE-APG or its suppliers be liable of any special, consequential, incidental or penal damages including, but not limited to, loss of profit or revenues, loss of use of the products or any associated equipment, damage to associated equipment, cost of capital, cost of substitute products, facilities, services or replacement power, down time costs, or claims of original purchaser's customers for such damages.

To obtain warranty service, return the product to your distributor with a description of the problem, proof of purchase, postpaid, insured, and in a suitable package.

ABOUT PROGRAMMING EXAMPLES

Any example programs and program segments in this manual or provided on accompanying diskettes are included solely for illustrative purposes. Due to the many variables and requirements associated with any particular installation, Horner APG cannot assume responsibility or liability for actual use based on the examples and diagrams. It is the sole responsibility of the system designer utilizing the XL+ OCS module to appropriately design the end system, to appropriately integrate the XL+ OCS module and to make safety provisions for the end equipment as is usual and customary in industrial applications as defined in any codes or standards which apply.

NOTE: The programming examples shown in this manual are for illustrative purposes only. Proper machine operation is the sole responsibility of the system integrator.

TABLE OF CONTENTS

PREFACE	
For user manual updates, contact Technical Support:	
LIMITED WARRANTY AND LIMITATION OF LIABILITY	
ABOUT PROGRAMMING EXAMPLES	3
TABLE OF CONTENTS	4
VISUAL MAP OF MAJOR TASKS AND THE KEY CHAPTERS TO ASSIST YOU	
CHAPTER 1: SAFETY / COMPLIANCE	
1.1 Safety Warnings and Guidelines	
1.2 Grounding	
1.3 Compliance	
·	
CHAPTER 2: INTRODUCTION	
2.1 Visual Overview of XL+ OCS	
Four Main Types of Information are covered in this manual	
2.1.4 Table of Figures	
2.2 Connectivity to the XL+ OCS	
2.4 Required and Suggested Accessories	
2.5 Useful Documents and References	
CHAPTER 3: MECHANICAL INSTALLATION	
3.1 Overview	
3.2 Mounting Requirements	
3.2.1 Mounting Procedures (Installed in a Panel Door)	
Mounting Orientation	
Figure 3.3 – XL+ OCS without Mounting Clips	
3.3.2 XL+ OCS Mounting Orientation	
3.4 Panel Cut-Out	
3.5 XL+ Dimensions	
3.6 Factors Affecting Panel Layout Design and Clearances	
3.6.1 Clearance / Adequate Space	
3.6.2 Grounding	
3.6.3 Temperature / Ventilation	
3.6.4 Orientation	
3.6.5 Noise	
3.6.6 Shock and Vibration	_
3.6.7 Panel Layout Design and Clearance Checklist	
CHAPTER 4: ELECTRICAL INSTALLATION	
4.1 Grounding Definition	
4.2 Ground Specifications	
4.3 How to Test for Good Ground	
4.4 Primary Power Port	
CHAPTER 5: SERIAL COMMUNICATIONS	
5.1 Overview	
5.3 Wiring	
5.4 RS485 Termination and Biasing	

5.5	Cscape Programming via Serial Port	
5.6	Ladder-Controlled Serial Communication	
5.7	Downloadable Serial Communication Protocols	24
СНАРТІ	ER 6: CAN COMMUNICATIONS	25
6.1	Overview	
6.2	Port Description	
6.3	CAN Port Wiring	
6.4	Cscape Programming via CAN	
6.5	Ladder-Controlled CAN Communication	26
6.6	Using CAN for I/O Expansion (Network I/O)	26
CHAPTI	ER 7: ETHERNET COMMUNICATION	27
7.1	Ethernet Module Protocols and Features	
7.2	Ethernet System Requirements	
7.3	Ethernet Module Specifications	
7.4	Ethernet Module Configuration	27
CUADTI	ER 8: COMMUNICATION OPTIONS	31
8.1	Overview	
8.2	COM Modules Options	
8.3	VIDEO / AUDIO AND DISPLAY PORT	
	ER 9: REMOVABLE MEDIA	
9.1	Overview	
9.2	MicroSD Cards	
9.3	MicroSD File System	
9.4 9.5	Using the Removable Media Manager	
9.6	Using Removable Media to Log Data	
9.7	Using Removable Media to View and Capture Screens	
9.8	Removable Media (RM) Function Blocks in Cscape	
9.9	Filenames used with the Removable Media (RM) Function Blocks	
9.10		
	TER 10: GENERAL I/O	
10.1 10.2		
10.2		
10.3		
10.4	•	
10.5		
10.0	5 1	
	0.7.1 Common cause of analog input tranzorb failure, Models 2, 3, & 4	
	gure 10.7 – Analog input tranzorb - troubleshooting	
10.8		
10.9		
10.1	5 1	
	ER 11: HIGH SPEED I/O (HSC / PWM)	
11.1 11.2		
–	Glossaryable 11.1 – Glossary of High Speed I/O Terms	
11.3		
	L.3.1 Frequency	
	L3.2 Totalize	
	L.3.3 Pulse Width Measurement	
11	L3.4 Period Measurement	40

11.3.	5 Quadrature	49
11.3		
11.4	HSC Functions Register Map	
11.5	High Speed Output Functions	
11.5.		
11.5.	2 PWM	53
11.5.		
11.5.		
11.6	High Speed Output Functions Register Map	
11.7		
11.8	STP Examples	
_	·	
	12: SYSTEM SETTINGS AND ADJUSTMENTS	
12.1	System Menu - Overview	
12.2	System Menu – Navigation and Editing	
12.3	System Menu – Details	
	.1 Set Networks	
<u>12.3.</u>		
<u>12.3.</u>		
<u>12.3.</u>		
<u>12.3.</u>	5 <u>View Protocols</u>	63
<u>12.3.</u>	6 Set Fkeys Mode	63
12.3	.7 Set Serial Ports	64
12.3	.8 Set Time/Date	65
12.3	.9 Set Beeper	66
12.3	.10 Set Screen	66
12.3	.11 Removable Media	67
12.3	.12 Fail – Safe System	68
12.3	13 Enable AutoRun	69
12.3	13 Enable AutoLoad	69
12.3	.14 Clone Unit	70
12.3		71
12.4	Touch Screen Calibration	71
12.5	License Details	72
CHADTED	13: USER INTERFACE	73
13.1	Overview	
13.1	Displaying and Entering Data	
13.2	Alpha-Numeric Keypad	
13.4	Screen Navigation	
13.5	Ladder-Based Screen Navigation	
13.6	Beeper Acknowledgement	
13.7	Touch (Slip) Sensitivity	
13.7	Alarms	
13.9	Removable Media	
13.10	Screen Saver	
13.10	Screen Brightness	
	9	
CHAPTE	R 14: REGISTERS	
14.1	Register Definitions	
14.2	Useful %S and %SR registers	
14.3	Register Map for XL+ OCS I/O	
14.4	Resource Limits	85
CHARTER	15: CSCAPE CONFIGURATION	0.0
15.1	Overview	
15.2	Cscape Status Bar	86

15.3 Establishing Communications	87
15.3.1 Communicating via MJ1 Serial Port	94
15.3.2 Communicating via On Board Ethernet Port	94
15.4 Configuration	96
15.5 Digital Input / HSC Configuration	97
15.6 Digital Output / PWM Configuration	
15.7 Analog Input Configuration	99
15.7.1 Advanced Math Functions	
15.8 Analog Output Configuration	101
CHAPTER 16 : FAIL - SAFE SYSTEM	102
16.1 Overview	102
16.2 Settings	102
16.3 Backup / Restore Data	103
16.4 AutoLoad	106
16.5 AutoRun	108
CHAPTER 17: CLONE UNIT	110
17.1 Overview	110
17.2 Clone	110
17.3 Load Clone	112
CHAPTER 18: MAINTENANCE	114
18.1 Firmware Updates	
18.2 Backup Battery	
18.2.1 Indications the battery needs replacing	
18.2.2 Battery Replacement	115
CHAPTER 19: TROUBLESHOOTING / TECHNICAL SUPPORT	117
19.1 Connecting to the XL+ OCS	117
19.1.1 Connecting Troubleshooting Checklist (serial port – MJ1 Programming)	118
19.1.2 Connecting Troubleshooting Checklist (USB Port - Mini B Programming)	118
19.1.3 Connecting Troubleshooting Checklist (ETN port programming)	118
19.2 Local Controller and Local I/O	118
19.2.1 Local I/O Troubleshooting Checklist	119
19.3 CsCAN Network	119
19.3.1 CsCAN Network Troubleshooting Checklist	119
19.4 Removable Media - Basic Troubleshooting	
19.5 Technical Support Contacts	
Main Index	121
Index of Figures & Tables	124

VISUAL MAP OF MAJOR TASKS AND THE KEY CHAPTERS TO ASSIST YOU

FIRST STEP of ANY TASK: DATASHEET

Each XL+ OCS unit is sent with a datasheet in the box. The datasheet (MAN1107-01_XL+_Datasheet) is the <u>first</u> document to refer to for model-specific information related to XL+ OCS models such as pin-outs, jumper settings, and other key installation information. To obtain updates to datasheets, manuals and user documentation, visit a Horner website (US: http://www.hornerautomation.com and Europe: http://www.hornerapg.com.)

QUICK START	INSTALLATION	PROGRAMMING	TROUBLESHOOTING
Safety / Compliance	Safety / Compliance	Safety / Compliance	Safety / Compliance
Page 9	<u>Page 9</u>	<u>Page 9</u>	Page 9
Introduction	Introduction	Introduction	Introduction
<u>Page 11</u>	<u>Page 11</u>	<u>Page 11</u>	<u>Page 11</u>
	Mechanical Installation	Serial Communications	Maintenance
	<u>Page 15</u>	<u>Page 23</u>	<u>Page 114</u>
	Electrical Installation	CAN Communications	Troubleshooting
	<u>Page 21</u>	<u>Page 25</u>	<u>Page 117</u>
		Ethernet	
		<u>Page 27</u>	
		Communication Options	
		<u>Page 31</u>	
		Removable Media	
		<u>Page 33</u>	
		High Speed I/O	
		<u>Page 46</u>	
		System Settings	
		<u>Page 57</u>	
		User Interface	
		<u>Page 73</u>	
		Registers	
		<u>Page 82</u>	
		Cscape Configuration	
		<u>Page 86</u>	
		Fail-Safe System	
		<u>Page 102</u>	
		Clone Unit	
		<u>Page 110</u>	

CHAPTER 1: SAFETY / COMPLIANCE

1.1 Safety Warnings and Guidelines

When found on the product, the following symbols specify:

Warning: Consult user documentation.

Warning: Electrical Shock Hazard.

WARNING – EXPLOSION HAZARD – Do not disconnect equipment unless power has been switched off or the area is known to be non-hazardous

WARNING: To avoid the risk of electric shock or burns, always connect the safety (or earth) ground before making any other connections.

WARNING: To reduce the risk of fire, electrical shock, or physical injury it is strongly recommended to fuse the voltage measurement inputs. Be sure to locate fuses as close to the source as possible.

WARNING: Replace fuse with the same type and rating to provide protection against risk of fire and shock hazards.

WARNING: In the event of repeated failure, do <u>not</u> replace the fuse again as a repeated failure indicates a defective condition that will not clear by replacing the fuse.

WARNING: EXPLOSION HAZARD—Substitution of components may impair suitability for Class I, Division 2.

WARNING: The USB parts are for operational maintenance only. Do not leave permanently connected unless area is known to be non-hazardous.

WARNING: EXPLOSION HAZARD—BATTERIES MUST ONLY BE CHANGED IN AN AREA KNOWN TO BE NON-HAZARDOUS

WARNING: Battery May Explode If Mistreated. Do Not Recharge, Disassemble or Dispose Of In Fire.

WARNING: Only qualified electrical personnel familiar with the construction and operation of this equipment and the hazards involved should install, adjust, operate, or service this equipment. Read and understand this manual and other applicable manuals in their entirety before proceeding. Failure to observe this precaution could result in severe bodily injury or loss of life.

- a. All applicable codes and standards need to be followed in the installation of this product.
- b. For I/O wiring (discrete), use the following wire type or equivalent: Belden 9918, 18 AWG, or larger.

Adhere to the following safety precautions whenever any type of connection is made to the module.

- a. Connect the green safety (earth) ground first before making any other connections.
- b. When connecting to electric circuits or pulse-initiating equipment, open their related breakers. Do <u>not</u> make connections to live power lines.
- c. Make connections to the module first; then connect to the circuit to be monitored.
- d. Route power wires in a safe manner in accordance with good practice and local codes.
- e. Wear proper personal protective equipment including safety glasses and insulated gloves when making connections to power circuits.
- f. Ensure hands, shoes, and floors are dry before making any connection to a power line.
- g. Make sure the unit is turned OFF before making connection to terminals. Make sure all circuits are de-energized before making connections.
- h. Before each use, inspect all cables for breaks or cracks in the insulation. Replace immediately if defective.

1.2 Grounding

Grounding is covered in various chapters within this manual.

1.3 Compliance

To check for compliance and updates, visit the Horner website (US: https://hornerautomation.com or Europe: https://www.horner-apg.com).

CHAPTER 2: INTRODUCTION

2.1 Visual Overview of XL+ OCS

Figure 2.1 - Overview of the XL+

2.1.1 Where to Find Information about the XL+ OCS

- a) Datasheet The datasheet is the first document to refer to for key information related to specific XL+ OCS models.
 - 1. The datasheets for all XL+ OCS models are available on the Horner websites.
 - 2. Datasheets contain pin-outs, jumper settings, and other model specific information.

b) **User Manual** -This manual provides general information that is common to XL+ OCS models and can be downloaded from our website.

Visit the Horner website (US: http://www.horner-apg.com) to obtain user documentation and updates.

2.1.2 Four Main Types of Information are covered in this manual

- a) Safety and Installation guidelines / instructions (Mechanical and Electrical)
- b) Descriptions of hardware features
 - 1) Serial ports, Removable Media, Communication Options, etc.
- c) Configuration and Use of the XL+ OCS
- d) Maintenance and Support

2.1.3 Manual Index

Major topics of interest may be found in the <u>Index</u> towards the end of this manual.

2.1.4 Table of Figures

Location of important drawings, illustrations (etc.) may be found in the Index of Tables and Figures.

2.2 Connectivity to the XL+ OCS

The XL+ OCS has excellent capabilities for connecting to a variety of devices. The diagram below shows some examples of devices that can be used with the XL+ OCS.

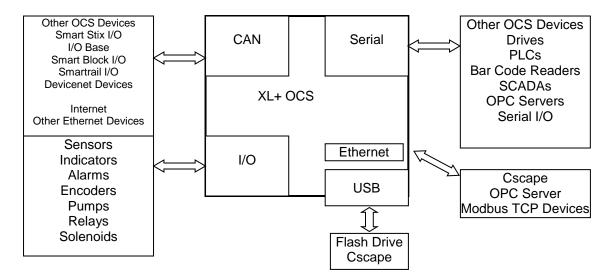


Figure 2.2 – Visual Overview of Types of Devices that can be connected to XL+OCS

2.3 Features of XL+ OCS

The XL+ OCSs are all-in-one industrial control devices. They combine control, user interface, I/O and networking into a single, integrated package. Unique features of the XL+ OCS include:

- 15" XGA 1024x768, 500 cd/m2 bright, 16,777,216 color graphical touch sensing LCD display in all models of XL+ with laminated touch screen.
- Soft function keys.
- Display of complex graphical objects including trends, gauges, meters, and animations.
- Ultra high speed dual-core CPU with higher performance graphic processing.
- Advanced control capabilities including floating point, multiple auto-tuning PID loops, and string handling capabilities.
- Removable media for up to 128GB of storage of programs, data logging, or screen captures.
- Dual isolated CsCAN networking port for communication with remote I/O, other controllers or PCs.
- Three high speed USB host ports for communication with PCs and a USB controller programming port.
- Three independent serial ports each available in RS232 or RS485.
- Configurable serial protocols for communication to drives, PLCs, or other serial peripherals.
- Full featured, built-in I/O including high resolution analog, thermocouple, RTD, high speed counters, PWM outputs and relays (depending upon the XL+ OCS model used).
- Advanced high speed I/O capabilities.
- Cscape programming software that allows all aspects of the XL+ OCS to be programmed and configured from one integrated application.
- Optional communication add-on modules.
- Two on board Ethernet ports (10/100/1000Mbps) for Cscape programming and application defined communication, with Auto MDI/MDI-X, Modbus TCP C/S, HTTP, FTP, SMTP, and Ethernet IP.
- Mic In and Audio Out.
- Mini Display Port Video Out Future Firmware.
- Special coated polycarbonate for premium appearance.
- Extra USB ports can be used for combination of camera / flash drives / any USB hub etc. if multiple flash drive / camera are connected, only one flash drive / camera will be considered.
- External Fonts support (with or without unicode).
- Added "Loading Program TTF Font files" while downloading TTF files to the unit.
- While performing "Export to Removable media / Save PGM" operation, two files a.re created –
 XYZ.PGM / DEFAULT.PGM and XYZ.Dat / DEFAULT.DAT files if external fonts are used.
- Updating FPGA during boot up of the device.
- Four counter HSC mode with all features are supported (number of quadrature's supported are two).

2.4 Required and Suggested Accessories

The following list contains a *sampling* of required and suggested XL+ OCS accessories. Visit the Horner websites to view updates on new products and accessories.

NOTE: The XL+ OCS is not shipped with a programming cable in the box. To obtain a programming cable, order HE500CBL300.

Table 2.1 – XL+ OCS Accessories				
Part Number	Description			
HE-MC1	Removable Media card - compatible with XL+ OCS. Card capacity is 2GB or larger.			
HE-MR1	Media Card Reader for HE-MC1. Portable device allows HE-MC1 to be plugged into the USB port of personal computers as a portable hard drive.			
Power supply 100-240VAC or 140-340VDC Switching supply that outputs 1.5 A / 3 A (HE-X24-AS/AL) at 24 VDC. Mounts on Standard DIN rail. Designed for X Family products.				
HE-X24-AL	Power supply 100-240 VAC or 140-340 VDC Switching supply that outputs 1.5 A / 3 A (HE-X24-AS/AL) at 24VDC. Mounts on Standard DIN rail. Designed for X Family products.			
HECSP Cscape Software Package on a reusable USB flash drive with symbol library.				
HE-XCK	Programming cables for all X products including a USB to serial adapter in a travel case.			
HE-CPK Cscape on a reusable USB flash drive. Programming cables for all X products including a USB to serial adapter in a travel case.				

2.5 Useful Documents and References

The following information serves as a *general* listing of Horner controller products and other references of interest with their corresponding manual numbers. Visit the Horner websites to obtain user documentation and updates.

Table 2.2 – OCS Reference Document Numbers		
NOTE: This list is <u>not</u> intended for users to determine which products are appropriate for their application;		
controller products differ in the features that they support. If assistance is required,	refer to Technical Support.	
Manual Description	Manual Number	
User Manual for XLE/XLT OCS models	MAN0878	
User Manual for XL6/XL6e OCS models	MAN0883	
User Manual for XL4 OCS models	MAN0964	
User Manual for QX Series models	MAN0798	
User Manual for NX Series models	MAN0781	
Other Useful References	Manual Number	
Supplement for SmartStack Ethernet Modules	SUP0740	
CAN Networks	MAN0799	
Spark Quenchers for Arc and Noise Suppression (output protection)	MAN0962	
XL+ Installation Cutout Drawing	MAN1108	

CHAPTER 3: MECHANICAL INSTALLATION

NOTE: The datasheet is the first document to refer to for model-specific information related to XL+ OCS models such as pin-outs, jumper settings, and other key installation information. Visit the Horner websites to obtain datasheets, user documentation, and updates.

3.1 Overview

The mechanical installation greatly affects the operation, safety and appearance of the system. Information is provided to mechanically install the unit such as cut-out sizes, mounting procedures, and other recommendations for the proper mechanical installation of the unit.

3.2 Mounting Requirements

3.2.1 Mounting Procedures (Installed in a Panel Door)

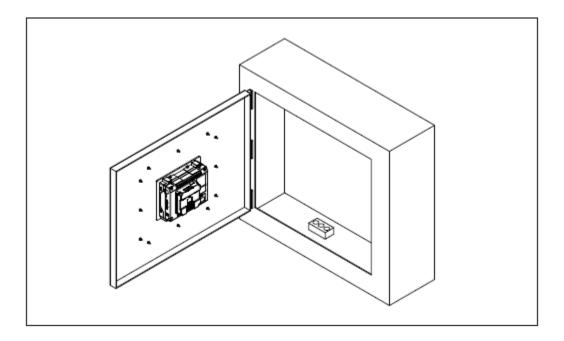


Figure 3.1 - Panel Mounting of an XL+ Series OCS

Once the panel design has been completed using the criteria and suggestions in the following sections, use the following steps to panel mount the XL+ OCS.

- 1. The XL+ allows unique installation options that simplify installation for systems that may not need robust vibration or water resistance.
- 2.If the system does not experience shock or vibration and will not be exposed to weather or wash down conditions, the unit can be installed by cutting the rectangular opening and installing the four (4) supplied clips.

- 3. For systems that may experience shock or vibration or are installed outdoors or in wash down environments, the rectangular cut and clips are used and perimeter holes must be drilled in the panel. The supplied studs are then inserted into the perimeter of the controller and supplied nuts will secure the perimeter of the unit to the panel.
- 4. Please reference the XL+ installation cutout drawing document (MAN1108) for further details.
- 5. Remove all connectors from the XL+ OCS unit.
- 6. Make sure both inner and outer gaskets are installed on the XL+ OCS and are free from dust and debris. Check that the corners of the gasket are secure.
- 7. Pass the unit through the panel.
- 8. The two (2) spring clips will latch the unit in the panel.
- 9.Insert each of the four (4) mounting clips into the slots in the XL+ OCS case. One clip should be installed on each corner. Lightly tighten each screw so the clip is held in place.
- 10. Tighten the screws on the clips such that the gasket is compressed against the panel. Recommended torque is 7-10 in-lbs (0.79-1.13 Nm).
- 11. If the perimeter studs are needed, it is recommended to use a thread locker (similar to 242 Blue Loctite). Use supplied lock washers and nut. Recommended torque is 3-4 in-lbs (0.34-0.45 Nm). Refer to Figure 3.2 for the proper torque sequence.

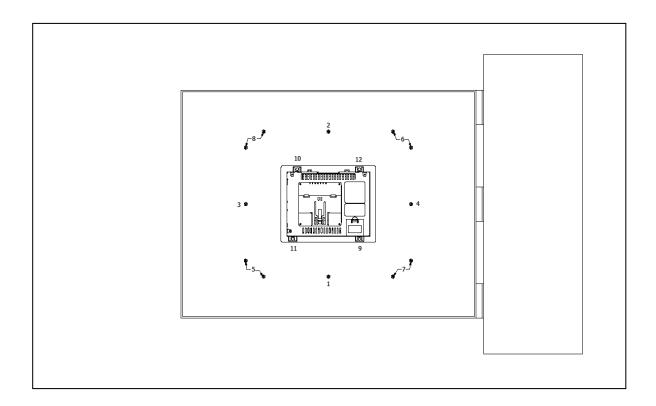


Figure 3.2—Perimeter Set Studs

Mounting Orientation

3.3.1 XL+ OCS Mounting Clip Locations

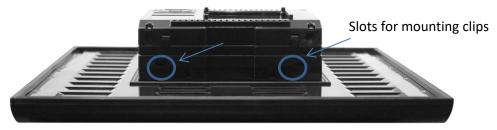


Figure 3.3 – XL+ OCS without Mounting Clips

3.3.2 XL+ OCS Mounting Orientation

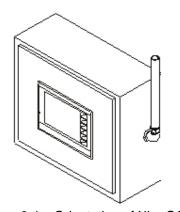


Figure 3.4 – Orientation of XL+ OCS

NOTE: There are no orientation restrictions on the XL+ OCS. However, the above orientation provides for optimum readability of the screen and ease of use of the soft keys.

3.4 Panel Cut-Out

For installations requiring NEMA 4X liquid and dust protection the panel cutout should be cut and perimeter holes must be drilled in the panel with a tolerance of \pm 0.005" (0.1 mm).

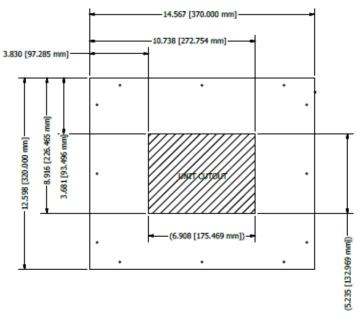


Figure 3.5 - Panel Cutout Tolerances

3.5 XL+ Dimensions

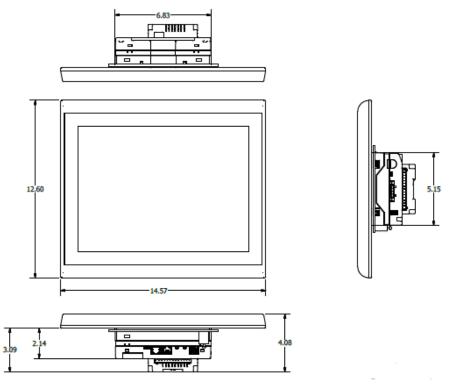


Figure 3.6– XL+ OCS Dimensions

3.6 Factors Affecting Panel Layout Design and Clearances

WARNING: It is important to follow the requirements of the panel manufacturer and to follow all applicable electrical codes and standards.

The designer of a panel layout needs to assess the requirements of a particular system and to consider the following design factors.

3.6.1 Clearance / Adequate Space

Install devices to allow sufficient clearance to open and close the panel door.

Table 3.1 – Minimum Clearance Requirements for Panel Box and Door		
Minimum Distance between	2 inches (FO 90mm)	
base of device and sides of cabinet	2 inches (50.80mm)	
Minimum Distance between	4.5 in all and (20.40 mm)	
base of device and wiring ducts 1.5 inches (38.10mm)		
If more than one device installed in panel box (or		
on door): Minimum Distance between bases of	4 inches between bases of each device (101.60mm)	
each device		
When door is closed:		
Minimum Distance between device and closed	2 inches (50.80mm)	
door (Be sure to allow enough depth for the OCS.)		

3.6.2 Grounding

WARNING: Be sure to meet the ground requirements of the panel manufacturer and also meet applicable electrical codes and standards.

<u>Panel Box</u>: The panel box must be properly connected to earth ground to provide a good common ground reference.

<u>Panel Door</u>: Tie a low impedance ground strap between the panel box and the panel door to ensure that they have the same ground reference.

3.6.3 Temperature / Ventilation

Ensure that the panel layout design allows for adequate ventilation and maintains the specified ambient temperature range. Consider the impact on the design of the panel layout if operating at the extreme ends of the ambient temperature range. For example, if it is determined that a cooling device is required, allow adequate space and clearances for the device in the panel box or on the panel door.

3.6.4 Orientation

When panel-mounted, there are no orientation restrictions on the XL+ OCS.

3.6.5 Noise

Consider the impact on the panel layout design and clearance requirements if noise suppression devices are needed. Be sure to maintain an adequate distance between the XL+ OCS and noisy devices such as relays, motor starters, etc.

For details on output protection, especially when using contactors and solenoids, see MAN0962-01-EN.

considered?

3.6.6 Shock and Vibration

The XL+ OCS has been designed to operate in typical industrial environments that may inflict some shock and vibration on the unit. For applications that may inflict excessive shock and vibration please use proper dampening techniques or relocate the XL+ OCS to a location that minimizes shock and/or vibration.

wing list provides highlights of panel layout design factors:
Meets the electrical code and applicable standards for proper grounding, etc.?
Meets the panel manufacturer's requirements for grounding, etc.?
Is the panel <u>box</u> properly connected to earth ground? Is the panel <u>door</u> properly grounded? Has the appropriate procedure been followed to properly ground the <u>devices</u> in the panel box and on the panel door?
Are minimum clearance requirements met? Can the panel door be easily opened and closed? Is there adequate space between device bases as well as the sides of the panel and wiring ducts?
Is the panel box deep enough to accommodate the XL+ OCS?
Is there adequate ventilation? Is the ambient temperature range maintained? Are cooling o heating devices required?
Are noise suppression devices or isolation transformers required? Is there adequate distance between the base of the XL+ OCS and noisy devices such as relays or motor starters? Ensure that power and signal wires are not routed in the same conduit.

Are there other requirements that impact the particular system, which need to be

CHAPTER 4: ELECTRICAL INSTALLATION

NOTE: The datasheet is the first document to refer to for model-specific information related to XL+ OCS models such as pin-outs, jumper settings, and other key installation information. Visit the Horner websites to obtain datasheets, user documentation, and updates.

4.1 Grounding Definition

Ground: The term *ground* is defined as a conductive connection between a circuit or piece of equipment and the earth. Grounds are fundamentally used to protect an application from harmful interference causing either physical damage such as by lightning or voltage transients or from circuit disruption often caused by radio frequency interference (RFI). Grounding is also for the safety of the user.

4.2 Ground Specifications

Ideally, a ground resistance measurement from equipment to earth ground is 0 ohms. In reality, it typically is higher. The U.S. National Electrical Code (NEC) states the resistance to ground shall <u>not</u> exceed 25 ohms. Horner APG recommends <u>less than</u> 15 ohms resistance from our equipment to ground. Resistance <u>greater</u> than 25 ohms can cause undesirable or harmful interference to the device.

4.3 How to Test for Good Ground

In order to test ground resistance, a Ground Resistance Tester must be used. A typical Ground Resistance Meter Kit contains a meter, two or three wire leads, and two ground rods. Instructions are supplied for either a two-point or three-point ground test.

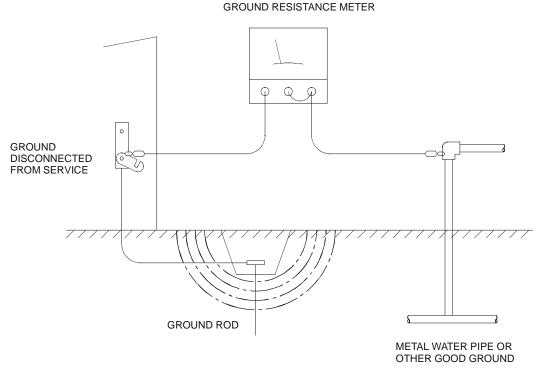


Figure 4.1 – Two-Point Ground Connection Test

4.4 Primary Power Port

Table 4.1 – Primary Power Port Pins			
PIN Signal Description		Description	
1	77	Frame Ground	
2	0V	Input power supply ground	
3	+24V	Input power supply positive voltage	

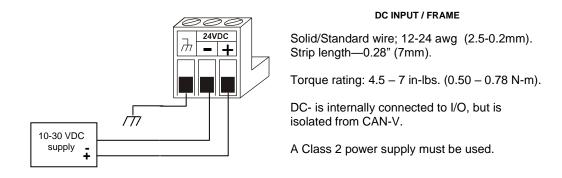


Figure 4.2 – Power Connector (Primary Power Port)

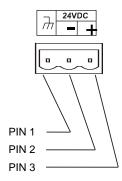


Figure 4.3 – Primary Power Port as Viewed Looking at the XL+ OCS

CHAPTER 5: SERIAL COMMUNICATIONS

5.1 Overview

XL+ OCS models provide three independent serial ports on 8-pin modular RJ45 connectors, which are labeled MJ1, MJ2, and MJ3. RS-232 or RS485 is available on MJ1. By default, MJ1 can be connected to the COM port of a PC running Cscape, for OCS programming. In addition, MJ1, MJ2, and MJ3 can be used for application-specific communication, using a variety of standard data exchange protocols.

The next two 8-pin modular RJ45 connectors, which are labeled MJ2 and MJ3, provide a multiplexed serial port, which can be configured for either RS232 or RS485. Both MJ2 and MJ3 can be optionally set for OCS programming via the System Menu for connection to the COM port of a PC running Cscape.

5.2 Port Descriptions

The MJ1 serial port contains a multiplexed serial port, which can be configured for either an RS232 interface with RTS/CTS handshaking or a half-duplex RS485 interface. MJ2 and MJ3 serial ports can be configured as either RS232 or RS485. The MJ2 and MJ3 RS485 interfaces provide software controlled internal termination and biasing resistors.

5.3 Wiring

MJ1: RS-232 w/full handshaking or RS-485 halfduplex via software switch

RS-485 termination and biasing via software

MJ1	PINS	
PIN	SIGNAL	DIRECTION
8	TXD	OUT
7	RXD	IN
6	OV	GROUND
5	+5V at 60mA	OUT
4	RTS	OUT
3	CTS	IN
2	RX-/TX-	IN/OUT
1	RX+/TX+	IN/OUT

[8	
MJ2/3 SERIAL POF	RTS
MJ2/3: RS-232 or RS-485 half or full-duplex, softwa selectable	
RS-485 terminati and biasing, softw selectable	

	MJ2	MJ2/3 PINS					
	PIN	SIGNAL	DIRECTION				
	8	TXD RS232	OUT				
	7	RXD RS232	IN				
	6	0 V	Ground				
S	5	+5V@60mA	OUT				
	4	TS- RS485	OUT				
е	3	TS+ RS485	OUT				
	2	RX- RS485	IN				
n i	1	RX+ RS485	IN				

Figure 5.1 – Wiring & Dip Switches

5.4 RS485 Termination and Biasing

Proper RS485 termination minimizes signal reflections and improves reliability.

MJ1, MJ2, and MJ3 serial ports allow an internal termination resistor to be placed across pins 1 and 2 by software control.

Only the two devices physically located at the endpoints of the RS485 network should be terminated.

RS485 biasing passively asserts a line-idle state when no device is actively transmitting, which is useful for multi-drop RS485 networking.

MJ1, MJ2, and MJ3 serial ports allow internal bias resistor to be activated by software control, pulling pin 1 up to 3.3V and pulling pin 2 down to ground.

If biasing is used, it should be enabled in only one of the devices attached to the RS485 network.

The "Set Serial Ports" option in the OCS System Menu can be used for termination and biasing. Also an application graphics screen that writes to %SR can do the same thing. Below are the details:

- For MJ1 termination make high %SR152.3
- For MJ2 termination make high %SR152.1
- For MJ3 termination make high %SR152.2
- For MJ1 biasing make high %SR152.4
- For MJ2 biasing make high %SR164.1
- For MJ3 biasing make high %SR164.2

5.5 Cscape Programming via Serial Port

The XL+ OCS MJ1, MJ2, and MJ3 serial ports support CsCAN Programming Protocol. If a PC COM port is connected to the XL+ OCS MJ1, MJ2, or MJ3 serial port, Cscape can access the XL+ OCS for programming and monitoring. Programming can also be done via the CAN port, USB A ports, or Ethernet.

5.6 Ladder-Controlled Serial Communication

Using Serial Communication function blocks, MJ1, MJ2, and MJ3 serial ports support Generic Modbus Master and Modbus Slave Protocols. In addition, external modems can be connected and accessed using Modem function blocks.

5.7 Downloadable Serial Communication Protocols

MJ1, MJ2, and MJ3 also support downloadable protocols, such as Allen Bradley DF1, CsCAN Master, GE Fanuc SNP, and Modbus Master.

NOTE: Refer to the download section of the Horner websites for the list of latest supported protocols.

CHAPTER 6: CAN COMMUNICATIONS

NOTE: For additional CAN information, refer to the CAN Networks manual (MAN0799) on the Horner websites.

6.1 Overview

All XL+ OCS models provide two CAN network ports, which are implemented with 5-pin connectors. The connectors are labeled **CAN1** and **CAN2**.

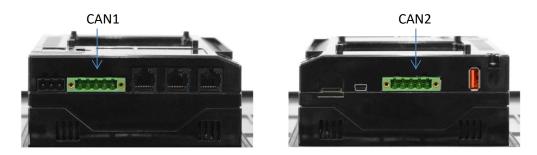


Figure 6.1 - CAN1 & CAN2 Connector Locations

The CAN1 port allows the XL+ OCS to exchange global data with other OCS/RCS controllers and to access remote Network I/O devices (SmartStix, Smart Blocks and Smart Rail Modules).

The CAN1 port also supports pass-through communications for programming multiple OCS controllers over the CsCAN network.

CAN2 port supports CsCAN, CANopen, J1939, and DeviceNet Master (layer 3 as a selectable option – one only).

6.2 Port Description

The XL+ OCS CAN ports implement the ISO 11898-2 physical layer and the CAN 2.0A data link layer standards. Also, since the CAN ports are powered by an internal isolated power supply, external CAN power is not required.

The CAN1 port does not supply power to the network.

6.3 CAN Port Wiring

CAN Connector

Use the CAN Connector when using CsCAN or other CAN network.

Torque rating 4.5 - 7 In-lbs (0.50 - 0.78 N-m).

CAN1 & CAN2 Port Pins							
Pin	in Signal Signal Description Di						
1	V-	Power -	-				
2	CN_L	CAN Data Low - Blue	In/Out				
3	SHLD	Shield	-				
4	CN_H	CAN Data High - White	In/Out				
5	V+	Power +	_				

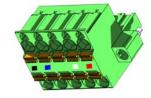


Figure 6.2 - CAN1 / CAN2 Port Pins

6.4 Cscape Programming via CAN

The CAN1 port supports CsCAN Programming Protocol. If a PC has a CAN interface installed (via PCI card or USB), and the PC CAN port is connected to the XL+ OCS CAN1 port, Cscape can access the XL+ OCS for programming and monitoring.

In addition, the XL+ OCS supports single-point-programming of all XL+ OCS and other OCS/RCS devices that are connected to the CAN1 port network. If the PC COM port is connected to the XL+ OCS MJ1 serial port, the XL+ OCS can act as a pass-through gateway allowing Cscape to access all XL+ OCS and OCS/RCS devices that are attached to the CAN1 port network.

6.5 Ladder-Controlled CAN Communication

Using Put and Get Network Words function blocks, the CAN 1 port can exchange digital and analog global data with other XL+ OCS or OCS/RCS devices (nodes) attached to the CAN1 port network.

In addition, Put and Get Network Heartbeat function blocks allow nodes on the CAN 1 port network to regularly announce their presence and to detect the presence (or absence) of other nodes on the network.

6.6 Using CAN for I/O Expansion (Network I/O)

Connecting Network I/O devices (SmartStix, SmartBlock or SmartRail) to the XL+ OCS CAN1 or CAN2 port allows the XL+ OCS I/O to be economically expanded and distributed. A variety of modules are available for this purpose.

CHAPTER 7: ETHERNET COMMUNICATION

7.1 Ethernet Module Protocols and Features

The following table describes the Ethernet Module Protocols and features supported by the two Ethernet ports on the XL+.

Protocol / Feature	Protocol / Feature Description
ICMP Ping	Internet Control Message Protocol
EGD (Peer)	Ethernet Global Data
SRTP Server	Service Request Transfer Protocol
CsCAN TCP Server	Horner APG CsCAN over Ethernet
Modbus TCP Slave	Modbus over Ethernet
Ethernet / IP Server	ODVA CIP over Ethernet
FTP Server	File Transfer Protocol
NTP	Network Time Protocol
HTTP Server	Hypertext Transfer Protocol (Web Server)

Table 7.1 – Ethernet Module Protocols & Features

7.2 Ethernet System Requirements

Full Ethernet functionality requires PC running Cscape Programming Software Version 9.8 or later (for configuration).

7.3 Ethernet Module Specifications

	10 BaseT Ethernet (10-Mbps)		
Speeds	100 BaseTx Fast Ethernet (100-Mbps)		
Modes	Half or Full Duplex		
Auto-Negotiation	Both 10/100-Mbps and Half/Full Duplex		
Connector Type	Shielded RJ-45		
Cable Type	CATE (or bottor) LITD		
(Recommended)	CAT5 (or better) UTP		
Port	Auto MDI/MDI-X (Auto Crossover)		

Table 7.2 – Ethernet Module Specifications

7.4 Ethernet Module Configuration

NOTE: The following configuration is required for all applications regardless of the protocols used. Additional configuration procedures must be performed for each protocol used.

To configure the Ethernet Module, use Cscape Programming Software to perform the following steps:

- 1. On the main Cscape screen, select the **Controller** menu and its **Hardware Configuration** submenu to open the I/O Configuration dialog (Figure 7.1).
- 2. If configuring a different OCS Model than the one shown in the Hardware Configuration dialog, click on the topmost **Config** button, select the desired OCS Model, and then click **OK.**

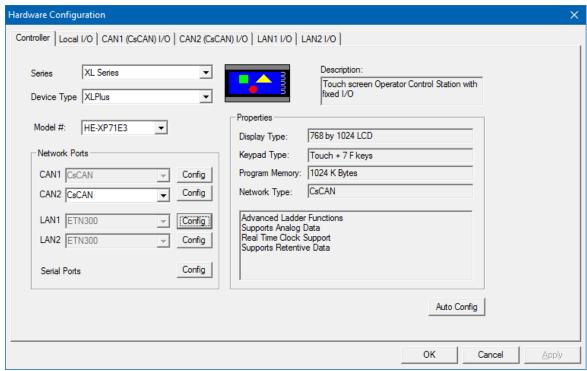


Figure 7.1 – Hardware Configuration Dialog

3. Click the **Config** button to the right of LAN1 for LAN 1 or LAN2 for LAN2, revealing the Ethernet Module Configuration dialog as shown in figure 7.2

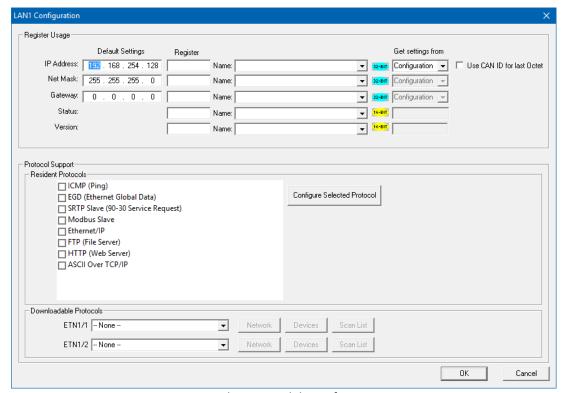


Figure 7.2 – Ethernet Module Configuration

Configure the Ethernet Module parameters as follows:

IP Address: Enter the static IP Address for the Ethernet Module being configured.

NOTE: IP Addresses are entered as four numbers, each ranging from 0 to 255. These four numbers are called octets, and they are always separated by decimal points.

Net Mask: Enter the Net Mask (sometimes called Subnet Mask) being used by all nodes on the local network. Typical local networks use Class C IP Addresses, in which case the low octet (rightmost number) is used to uniquely identify each node on the local network. In this case, the default Net Mask value of 255.255.255.0 should be used.

Gateway: Enter the IP Address of a Gateway Server on the local network that allows for communication outside of the local network. To prevent the Ethernet Module from communicating outside the local network, set the Default Gateway IP Address to 0.0.0.0 (the default setting).

Status Register: Enter an OCS Register reference (such as %R100) to indicate which 16-bit OCS register will have the Ethernet Status Word written to it. Table 7.3 shows how this register value is formatted and explains the meaning of each bit in the Status Word.

	Ethernet Status Word Register Format														
	High Byte							Low Byte							
Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
0	0	Dup	Spd	0	Rx	Tx	Link	TCP Connections							
	St. 1. 12:1/)									Status Values					
3	Status Bit(s)			Status Indication						Minimum Maximum			ım		
	0			Reserved						Always 0					
	Dup			Link Duplex (Auto-Negotiated)					C) = Half	Duplex	1 =	= Full Du	ıplex	
Spd				Link Speed (Auto-Negotiated)						0 = 10 MHz			1 = 100 MHz		
Rx				Receive State						0 = Inactive			1 = Active		
Tx				Transmit State						0 = Inactive 1 = Activ		ve			
Link				Link State						0 = Down 1 = Up)			
TCP Connections				Total Number of Active TCP Connections (CsCAN, SRTP, Modbus, EIP, FTP, HTTP)						0			40		

Table 7.3 – Ethernet Status Word Register Format

Version Register: Enter an OCS register reference (such as %R101) to indicate which 16-bit OCS register will have the Ethernet Firmware Version written to it, with two implied decimal points. For example, for Ethernet Firmware Version 4.30, the Version register will contain 430.

Get Settings From:

"Get settings from" allows the programmer to either configure the IP Address, Net Mask, or Gateway for two functions: Configuration or Register.

Configuration – The configuration for the IP Address, Net Mask, or the Gateway will be assigned using the value in the Default Settings in this window. The System Menu can temporarily override the Configuration option, but only until the next power cycle or Run To Stop transition. At that point, these parameters will revert to their configured values.

Register – The configuration for the IP Address, Net Mask, or the Gateway will be assigned using the values in the registers assigned. The system menu cannot override these parameters when this mode is selected.

Ethernet Module Protocol Configuration

The Protocol Support area contains a list of all the protocols supported by the platform being configured. To activate a protocol, check its checkbox.

For protocols that require additional configuration, click on a listed protocol to select it and then click the Configure Selected Protocol button. This will open a new dialog with configuration options for the selected protocol.

For detailed information on individual protocol configuration refer latest version of ETN 300 Manual SUP0740.

CHAPTER 8: COMMUNICATION OPTIONS

8.1 Overview

To supplement the built-in MJ1, MJ2 and MJ3 serial ports, additional communication options are available. This is accomplished by installing a COM module in the XL+ OCS controller.

Previous OCS controllers shared a serial port with the communication options. The XL+ has a separate serial port which allows using MJ1, MJ2, MJ3, and the communication options simultaneously. Internal to the XL+ OCS, there is a CPU board, and up to two installed modules. Model HE-XP7E0 has no installed I/O or add-on COM modules (standard communications are available). All other models have an I/O module in Slot 1 and could have a user-installed COM module in Slot 2. A blank I/O board kit to support a COM module in these models is available.

This chapter briefly describes the Modem COM module options. For detailed information regarding these modules, please refer to the individual documents provided with the modules.

8.2 COM Modules Options

A Modem COM module can be installed to allow Cscape programming of an XL+ OCS over a dial-up network. In addition, the application ladder program can take control of the modem for application-specific modem communication.

The Modem COM module supports the standard AT command set and can connect to the dial-up network at speeds up to 14.4 KBaud. Connection speed is auto-negotiated. The Modem COM module connects to the dial-up network (phone line) via a cable with a standard RJ11 modular plug.

To enable Cscape programming via a dial-up network, the Modem COM module should first be configured as the Default Programming Port, using the XL+ OCS System Menu. Doing this puts the Modem COM module in auto-answer mode, so Cscape can call the XL+ OCS via a remote modem.

To program the ladder application to communicate via the Modem COM module, standard Cscape Serial and Modem function blocks can be used.

Additional XL Series COM options are shown below:

Part Number	Description	Supported
HE-XDAC007	2-channel Analog Out (mA/V)	Supported
HE-XDAC107	4-channel Analog Out (mA/V)	Supported
HE-HXSQ	24V Dual High Speed Output	Supported
HE-XHSQ-5	5V Dual High Speed Output	Supported
HE-XPBS	Profibus DP Slave	Supported
HE-	GPS Receiver	Supported
200GPS183**		
HE-XEC	Add-on Ethernet	NOT supported
HE-XRC9	900 MHz I W Radio Modem	NOT supported
HE-GSM04*	GSM/GPRS Cellular Modem	NOT supported

*add ANT suffix to include antenna, **external unit

Table 8.1 – XL Series COM Options

8.3 VIDEO / AUDIO AND DISPLAY PORT

Display port is not supported in XL+ as of now.

- 1. Video object supports 320 x 240 and variable size resolutions.
- 2. Videos of any formats like mp4, mov, mpg, wmv, etc., can be played.
- 3. Audio in video is supported (Mute and Unmute).
- 4. Seek and volume control are supported in video object:
 - Volume Control This is used to control volume of audio in video (Range is 0 to 100).
 - Seek Control This is used to view video by forwarding / rewinding (Range is 0 to 100).

CHAPTER 9: REMOVABLE MEDIA

9.1 Overview

All XL+ OCS models provide a Removable Media slot, labeled **Memory Card**, which supports standard MicroSD Flash memory cards. MicroSD cards can be used to save and load applications, to capture graphics screens, and to log data for later retrieval.

Figure 9.1 - Removable MicroSD Memory Card Slot

9.2 MicroSD Cards

When the MicroSD card format was introduced, it was originally called TransFlash. Cards labeled either MicroSD or TransFlash, with up to 128 GB of Flash memory, are compatible with the XL+ OCS Memory slot (larger sizes were not tested at time of publication). The Memory slot is equipped with a "push-in, push-out" connector and a MicroSD card can be safely inserted into the Memory slot whether the XL+ OCS power is On or Off.

To install a MicroSD card: Align its 8-pin gold edge connector down, facing the front of the XL+ OCS unit as shown in **Figure 9.2**; then carefully push it all the way into the Memory slot. Ensure that it clicks into place.

To remove the MicroSD card: Push in on the top of the card gently to release the spring. The card pops out for removal.

9.3 MicroSD File System

The MicroSD Memory slot supports SDHC, SDXC IN FAT32 format up to 128GB max. The MicroSD slot can be used for program download (*.pgm), to save the downloaded program (*.pgm), for loading and logging data (*.csv), recipes (*.csv), WebMI, and in conjunction with the Fail-Safe feature. Long filenames are supported for program download, but when viewed in the System Menu and in the Removable Media screen object, the filename is displayed truncated.

9.4 Using the Removable Media Manager

The Removable Media Manager is an interactive XL+ OCS screen that performs the following functions:

- a. Display number of total and free K bytes
- b. Browse file and directory lists
- c. Delete files and directories
- d. Format a MicroSD card
- e. Load and save application programs
- f. View screen capture bitmaps

The Removable Media Manager can be accessed via the System Menu or by using Cscape to place a Removable Media Manager object on an application graphics screen.

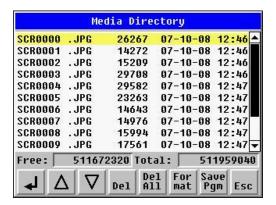


Figure 9.2 – Removable Media Submenu

9.5 Using Removable Media to Log Data

Using Read and Write Removable Media function blocks, an application ladder program can read and write XL+ OCS register data in the form of comma-delimited files, with a .CSV extension. These files are compatible with standard database and spreadsheet PC programs. In addition, an application ladder program can use Rename and Delete Removable Media function blocks to rename and delete files.

9.6 Using Removable Media to Load and Save Applications

A special file type, with a .PGM extension, is used to store XL+ OCS application programs on MicroSD.

To load an application from MicroSD to the XL+ OCS, use the Removable Media Manager (open the Removable Media Manager in the System Menu) to find and highlight the desired .PGM file, and then press the Enter key.

To save an application from the XL+ to MicroSD, open the Removable Media Manager in the System Menu and press the Save Pgm function key. The application will be saved in a file called **DEFAULT.PGM** in the MicroSD root directory.

NOTE: Saving an application to MicroSD can <u>only</u> be done from the Removable Media System Menu and is <u>not</u> available on a Removable Media Manager object that was placed on an application graphics screen by Cscape.

Cscape can also save an application directly to a MicroSD card, which is plugged into the PC's MicroSD compatible card reader by selecting the Export to Removable Media item on the Cscape File menu.

9.7 Using Removable Media to View and Capture Screens

The XL+ OCS File System uses bitmap files with the .BMP extension or JPEG files with the .JPG extension to store XL+ OCS graphic screen captures.

To view a captured XL+ OCS screen, use the Removable Media Manager to find and highlight the desired .BMP or .JPG file, and then press Enter.

To capture an XL+ OCS screen, turning On the assigned **Screen Capture Control Register** will capture the current XL+ OCS graphics screen and write it to the MicroSD card using the assigned **Screen Capture Filename**.

Before capturing an XL+ OCS screen, Cscape must first be used to assign a **Screen Capture Control Register** and **Filename** in the application. To do this, first open the Graphics Editor by selecting the **View**/ Edit Screens item on the Cscape Screens menu. Next, select the **Screen Capture** item of the Graphics Editor Config menu and then enter a **Control Register** and **Filename**.

9.8 Removable Media (RM) Function Blocks in Cscape

NOTE: For detailed information regarding RM function blocks and parameters, refer to the help file in Cscape Software. Refer 'USB Flash Media support for RM Functions' for USB flash drive access details.

The following RM functional blocks are available in Cscape Software. These function blocks will reference

- MicroSD when filename is prefixed with 'A:' or nothing, OR
- USB Type-A Flash Drive when filename is prefixed with 'B:'.

Read RM csv	Allows reading of a comma-separated value file from the MicroSD interface		
	into the controller register space.		
Write RM csv Allows writing of a comma-separated value file to the MicroSD interface			
	the controller register space.		
Rename RM csv	Allows renaming a file on the RM card. The data in the file is not changed.		
Delete RM csv	Allows deleting a file on the RM card		
Copy RM csv	Allows copying a file on the RM card. The data in the file is not changed.		

9.9 Filenames used with the Removable Media (RM) Function Blocks

The RM function blocks support the flash with a DOS/Windows standard FAT-16 file system. All names must be limited to the "8.3" format where the filename contains eight characters a period then a three-character extension. The entire filename including any path must be less than or equal to 147 characters.

When creating filenames and directories it is sometimes desirable to include parts of the current date or time. There are six special symbols that can be entered into a filename that are replaced by the OCS with current time and date information.

Table 9.1 – Filename Special Symbols						
Symbol Description Example						
\$Y	Substitutes the current 2 digit year	2004 = 04				
\$M	Substitutes the current month with a 2 digit code	March = 03				
\$D	Substitutes the current day	22 nd = 22				
\$h	Substitutes the current hour in 24 hour format	4 pm = 16				
\$m	Substitutes the current minute	45 = 45				
\$s	Substitutes the current second	34 = 34				

Table 9.1—Filename Special Symbols

NOTE: All the symbols start with the dollar sign (\$) character. Date symbols are in upper case, and time symbols are in lower case. The following are examples of the substituted time/date filenames:

Current date and time = March 1, 2013 3:45:34 PM

Filename: Data\$M\$D.csv = Data0301.csv

Filename: Year\$Y\Month\$M\aa\$D_\$h.csv = Year04\Month03\aa01_15.csv Filename: Month_\$M\Day_\$D\\$h_\$m_\$s.csv = Month_03\Day_01\15_45_34.csv

9.10 System Registers used with RM

%SR174 Removable	Write a 1 to %SR174 to prohibit read/write access to the removable media card.		
Media Protect	Write a zero (0) to allow access.		
%SR175 Status	This shows the current status of the RM interface.		
%SR176 Free Space	This 32-bit register shows the free space on the RM card in bytes.		
%SR178 Card Capacity	This 32-bit register shows the total card capacity in kilobytes.		

Possible status values are shown in the table:

Table 9.2 – RM Status Values					
0 RM interface OK					
1	Card present but unknown format				
2	No card in slot				
3	Card present, but not supported				
4	Card swapped before operation was complete				
5	Unknown error				

Table 9.2—RM Status Values

For additional status information, consult the Cscape help file.

CHAPTER 10: GENERAL I/O

NOTE: Each XL+ OCS unit is sent with a datasheet in the box. The datasheet is the first document to refer to **for model-specific information related to XL+ OCS models such as pin-outs, jumper settings, and other key installation information**. Visit the Horner websites to obtain datasheets, user documentation, and updates.

10.1 Overview

The XL+ OCS is a compact unit that contains high density, very versatile I/O. Using the I/O properly requires wiring to the proper terminals, configuring jumpers inside the XL+ OCS unit and configuring Cscape properly. This section will offer some tips and suggestions to configure the I/O properly. For the register mapping of the I/O, refer to the Index at the end of this manual for the pages referencing register mapping.

10.2 Removing the XL+ OCS I/O Cover

WARNING: Power, including I/O power *must be removed* from the unit prior to removing the back cover. Failure to do so could result in electrocution and/or damage to equipment.

Some I/O configurations require jumper settings to be changed in the XL+ OCS unit. Examples of these settings are setting positive or negative logic on digital inputs or setting current or voltage on analog inputs.

Each XL+ OCS I/O jumper is set to a factory default. Refer to the XL+ datasheet to find the default setting to determine if a jumper change is necessary for a particular application.

To remove the I/O cover of the XL+ OCS, remove the four (4) Phillips screws from the I/O back. It may help to place the XL+ OCS unit face down on a clean work surface. Once the four screws are removed, the I/O cover can be lifted straight off.

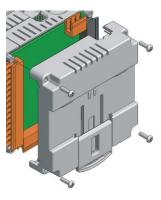


Figure 10.1 – Removing the I/O Cover

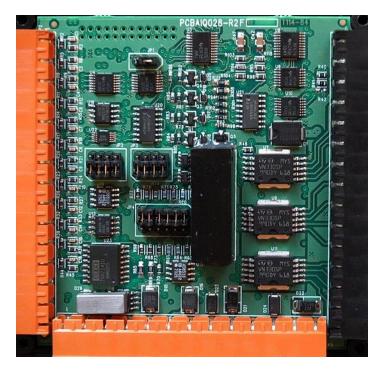


Figure 10.2 - XL+ I/O Cover Removed (sample I/O board)

Once the back is removed, the jumper selection can be changed. The jumper settings are documented on each data sheet using a diagram such as the figure below and a description of the jumper settings.

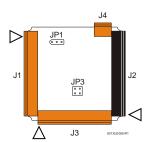


Figure 10.3 – Example Jumper Diagram

To re-install the cover, place the I/O cover back on the unit.

Place the screw back into the hole and turn the screw slowly counter clockwise until it clicks into the threads. This prevents the screw from being cross-threaded. Now turn the screw clockwise until the cover is firmly secured. Repeat this process for all four (4) screws.

Ensure not to exceed the recommended max torque of 7-10 in-lbs [0.8 – 1.13 Nm].

10.3 Model and I/O Overview

Table 10.1 – I/O and Model Overview								
XL+ Models	DC In	DC Out	Relays	HS In	HS Out	mA/V In	mA/V RTD/Tc	mA/V Out
HE-XP7E0								
HE-XP7E2	12		6	4		4		
HE-XP7E3	12	12		4	2	2		
HE-XP7E4	24	16		4	2	2		
HE-XP7E5	12	12		4	2		2	2
HE-XP7E6	12	12		4	2	6*	6*	4*

Table 10.1—I/O and Model Overview

Table 10.1 shows the different types of I/O included with the various XL+ OCS models. Specific specifications, jumper settings and wiring diagrams can be found on the data sheets attached at the end of the manual. Descriptions and applications of the different type of I/O can be found below.

10.4 Solid-State Digital Outputs

Solid-state digital outputs are generally used to activate lamps, low voltage solenoids, relays, and other low voltage and low current devices.

NOTE: The digital outputs used on the XL+ OCS are "sourcing" outputs. This means the output applies a positive voltage to the output pin when turned ON. When turned off, the output applies approximately zero volts with respect to the I/O ground.

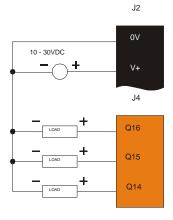


Figure 10.4 - Typical Output Wiring

^{*}up to six mA/V In, mA/V RTD/Tc, and 4 mA/V Out.

The digital outputs used in the XL+ OCS have electronic short circuit protection and current limiting. While these electronic protections work in most applications, some application may require external fusing on these outputs.

The digital outputs in the XL+ OCS are typically controlled via %Q bits in the register mapping. Some of the outputs are designed for high-speed applications and can be used for PWM or frequency output applications. Please see the data sheet and the chapter on High Speed I/O for additional information.

When the controller is stopped, the operation of each output is configurable. The outputs can hold the state they were in before the controller stopped, or they can go to a predetermined state. By default digital outputs turn off. For more information on stop state see the <u>Index</u> to find pages referencing Cscape settings.

The digital outputs feature an output fault bit. %I32 will turn on if any of the outputs experience a short circuit, over-current or the output driver overheats.

10.5 Relay Outputs

Relay outputs are designed to switch loads that typically have high voltage or current requirements or require the isolation that relays provide.

NOTE: The design of the XL+ OCS does not require external coil power for the relays to function. The relays will activate anytime the XL+ OCS is powered.

There are several factors that should be considered when using relays:

Relay Life – Relays are mechanical devices that have a long but limited life. Typically, switching more current limits the life of relays. Please check the data sheets at the end of this manual for expected relay life.

Current / Temperature De-Rating – Products containing relays often have total current limits based on the ambient temperature of the application. Please see the product data sheet for current / temperature de-rating information for relays.

Fusing – External fusing is generally required to protect the relays, devices, and wiring from shorts or overloads.

Warning: To protect the module and associated wiring from load faults, use external **(5 A)** fuse(s) as shown. Fuses of lower current or fusing for the entire system need to be in place to assure the maximum current rating of the unit is not exceeded.

Warning: Connecting high voltage to any I/O pin can cause high voltage to appear at other I/O pins.

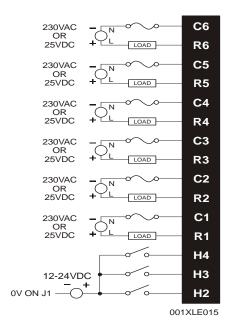


Figure 10.5 - Relay Fusing

Protection for Inductive Loads—Inductive loads can cause reverse currents when they shut off that can shorten the life of relay contacts. Some protective measures need to be determined by an engineer. If you have questions on protection from inductive load, consult an application engineer or HEAPG Technical Support. Details on devices that may protect outputs can be found in MAN0962-01.

Output State on Controller Stop—When the controller is stopped the operation of each output is configurable. The outputs can hold the state they were in before the controller stopped, or they can go to a predetermined state. By default relay outputs turn off. For more information on stop state see the Index for Cscape settings pages.

10.6 Digital Inputs

NOTE: Refer to the datasheet for XL+ OCS model being used for details on jumper settings.

NOTE: The digital inputs on the XL+ OCS are designed for low voltage DC inputs. The inputs are designed to support both positive and negative input modes. The mode is set by a jumper setting and a configuration parameter in Cscape. All the inputs on the unit must be configured to the same mode.

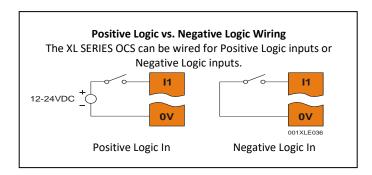


Figure 10.6 – Positive and Negative Inputs

In positive logic mode, a positive voltage applied to the input will turn the input. The internal design of this mode is basically a resistor from the input to I/O ground. This mode is sometimes called **sourcing**.

In negative logic mode, connecting the input to the I/O ground or zero volts will turn the input on. The internal design of this mode is basically a resistor from the input to the positive I/O voltage (usually 12 or 24 volts). This mode is sometime called **sinking**.

Some of the digital inputs may support high-speed input functional such as counting or frequency measurement.

10.7 Analog Inputs

NOTE: See the data sheet for the XL+ OCS model being used for jumper settings and see the appropriate page in this manual (see Index) for details on how to use Cscape to configure the digital filtering.

The analog inputs on the XL+ OCS allow voltage or current measurement from a variety of devices. The voltage or current mode is set though jumpers on the unit and settings in Cscape. Each channel can be separately configured for voltage or current mode.

The analog inputs have a digital filter that can be used to filter electrical noise that may be unavoidable in some installations. The downside to digital filtering is the inputs will respond more slowly to sudden changes in the actual input.

10.7.1 Common cause of analog input tranzorb failure, Models 2, 3, & 4

If a 4-20mA circuit is initially wired with loop power but without a load, the analog input could see 24Vdc. This is higher than the rating of the tranzorb.

This can be solved by not connecting loop power prior to load connection or by installing a low-cost PTC in series between the load and the analog input.



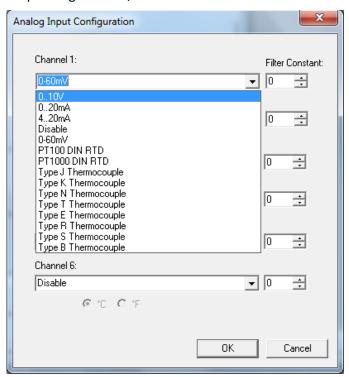
Figure 10.7 – Analog input tranzorb - troubleshooting

10.8 Universal Analog Inputs Model 5

NOTE: See the data sheet for the XL+ OCS model being used for jumper settings, and see the appropriate pages in this manual (see <u>Index</u>) for details on how to use Cscape to configure the digital filtering.

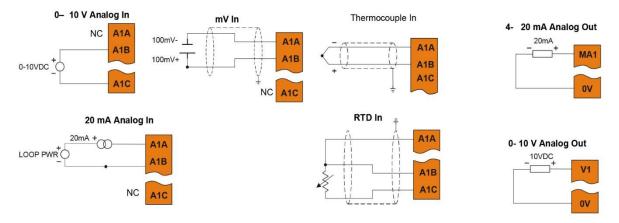
The universal analog inputs provide a high resolution, very flexible interface for a variety of analog inputs. These inputs include voltage, current, thermocouple, RTD, and millivolt. Each channel can be configured separately using jumpers and configuration settings in Cscape.

Like the standard analog inputs, these inputs have a digital filter that can be used to filter electrical noise that may be unavoidable in some installations. The downside to digital filtering is the inputs will respond more slowly to sudden changes in the actual input.



10.9 Universal Analog Inputs

Universal Analog Inputs


The Universal Analog Inputs on the model 6 IO board are unique from other Horner X-series input/output cards in that they are configurable through the module configuration instead of having to change jumper settings in order to setup the input type. To configure the Universal Analog input type:

- 1) Select **Analog In** to access the Analog Input Configuration menu.
- 2) Select any of the Analog input types from the dropdowns by clicking the down arrow beneath each corresponding Channel, as seen below:

3) Ensure the proper wiring is used for each of the three (3) pins **A**, **B**, and **C** on the Universal Analog Inputs as seen in the reference image below.

Wiring Details:

SPRING CLAMP TERMINALS: Solid/Stranded wire—16-24 awg (1.5-0.2mm²).

Strip Length—0.31" (8mm).

SCREW TERMINALS: Solid/Stranded wire—14-28 awg (2.1-0.08mm²).

Strip Length—0.24" – 0.28 (6-7mm). Torque Rating—2 in-lbs (0.2 N-m).

10.10 Analog Outputs

NOTE: Refer to the datasheet for XL+ OCS model being used for details on jumper settings. The analog outputs on XL+ OCS devices provide high resolution voltage or current outputs. The voltage or current selection is controlled with jumpers and configuration settings in Cscape.

NOTE: Each channel can be separately configured for voltage or current mode.

When the controller is stopped, the operation of each output is configurable. The outputs can hold the state they were in before the controller stopped or they can go to a predetermined value. By default analog outputs are set to a value of zero. For more information on Stop State, refer to the appropriate pages (see Index) for the configuration chapter for Cscape settings.

CHAPTER 11: HIGH SPEED I/O (HSC / PWM)

11.1 Overview

In addition to the compliment of simple analog and digital I/O, several of the XL+ OCS I/O modules support High Speed Counting (HSC) I/O functions and may also support Pulse Width Modulation (PWM) Output functions (non-relay modules). The HSC functions include: internal timing, frequency, totalizing, pulse width/period, and quadrature measurement. The PWM functions include: traditional PWM (with variable rate and duty cycle) and a stepper (limited functionality) with variable acceleration and deceleration rates. To determine function availability, refer to the associated model's Specification/Installation sheet (Digital DC Input / Output sections).

This chapter describes the operation of these high level I/O functions. For configuration details of these functions, see <u>Cscape Configuration</u>.

11.2 Glossary

Accumulator	Register used to accumulate or store up a sum or count of many items or events.
Clear	A special function to zero out the value in a specific register. (Not used with Frequency or Period Measurement.)
Disable	A special function to prevent the counter from running.
Encoder	A sensor or transducer for converting rotary motion or position to a series of electronic pulses.
Frequency Input	The number of times an electromagnetic signal repeats an identical cycle in a unit of time, usually one second.
Latch (strobe)	A special function that uses a digital logic circuit to store one or more bits. A latch has a data input, a clock input, and an output. When the clock input is active, data on the input is "latched" or stored and transferred to the output register either immediately or when the clock input goes inactive. The output retains its value until the clock goes active again.
Marker	Input into the OCS that indicates a particular position. Typically an encoder has a marker output that represents a specific point in the rotation.
Polarity	A Polarity pull-down box is associated with each function and indicates the manner in which the trigger happens (e.g., High level, Low Level, Falling Edge, Rising Edge).
Preload (load)	A special function used to trigger loading of a value into a register upon an event. (Not used with Frequency or Period Measurement.)
Quadrature	A high speed device that expresses the phase relationship between two periodic quantities of the same period when the phase difference between them is one fourth of a period. A coupler in which the two output signals are 90° out of phase.
Totalizer	A counter that sums the total number of cycles applied to its input.

Table 11.1 – Glossary of High Speed I/O Terms

11.3 High Speed Counter (HSC) Functions

The XL+ supports two very high speed, configurable counters. There are four dedicated inputs that can be configures to a number of different options. Each of the two counters can run in one of five modes. Those modes are Totalizer, Frequency Counter, Pulse Width Measurement, Period Measurement, and Quadrature measurement. For some modes, more than one HSC input may be consumed. The measurement values are provided to ladder in a %AI register (see page 49).

11.3.1 Frequency

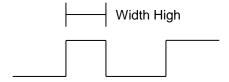
In frequency mode, the frequency of the input signal is written to the accumulator in terms of Hertz (cycles/second). When using frequency mode, four update selections are provided which specify the width of the sample window. Note that selecting a shorter sample window provides a quicker measurement (faster response) but lowers the frequency accuracy (resolution) and increases the minimum frequency measurement limit. In this mode the Disable and Latch special functions are allowed. Please see section 11.2 for a description of these functions.

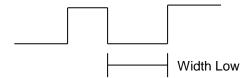
11.3.2 Totalize

In totalize mode, the accumulator is simply incremented or decremented each time the input transitions in a specific direction.

The totalizer supports the following modes:

Internal	This mode ties the input to the counter to an internal 10MHz or 1MHz
	clock. The special functions can be used to accurately time events.
Count Up	This increments the accumulator when the input is enabled. Note that
	two inputs can be assigned. Either input can cause the counter to
	increment. The second input can also be disabled.
Count Down	This decrements the accumulator when the input is enabled. Note that
	two inputs can be assigned. Either input can cause the counter to
	decrement. The second input can also be disabled.
Up/Down	In this mode, input 1 (assigned to any of the four inputs) increments the
(Input 1 Up/Input 2 Down)	counter, while input 2 (also assigned to any of the 4 inputs) decrements
	the counter.
Clk/Dir	This mode uses input 1 as a clock signal to increment or decrement the
(Input 1 Clk, Input 2 Dir)	counter and then uses input 2 to decide the direction. Input 2 disabled
	increments the counter, while input 2 enabled decrements the counter.

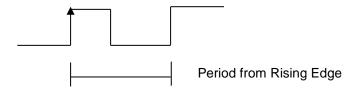

NOTE: The totalize mode enables the Disable, Latch, Preload, and Clear special functions. Please see section 11.2 for details.


11.3.3 Pulse Width Measurement

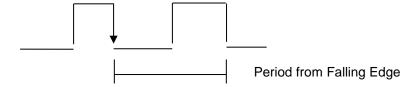
In pulse width measurement mode, the high-speed input can measure the width of a pulse stream in one of two modes and provides a continuous indication of the last sampled value. In this mode, the Disable and Latch special functions are allowed. Please see section 11.2 for a description of these functions.

Width High 1 μ s Counts – In this sub-mode the accumulator value will contain the number of 1 μ s counts the pulse is high.

Width Low 1 μ s Counts - In this sub-mode the accumulator value will contain the number of 1 μ s counts the pulse is low.



Figures 11.1-11.2 - Pulse Width Measurements, High & Low


11.3.4 Period Measurement

In period measurement mode, the highspeed input can measure the period of a pulse stream in one of two modes and provides a continuous indication of the last sampled value. In this mode the Disable and Latch special functions are allowed. Please see section 11.2 for a description of these functions.

Period Rising Edges 1 μ s Counts – In this sub-mode the period of the input signal is reported in one (1) μ s units. The period measurement will start on the rising edge of the input.

Period Falling Edges 1 μ s Counts – In this sub-mode the period of the input signal is reported in one (1) μ s units. The period measurement will start on the falling edge of the input.

Figures 11.3-11.4 – Period Measurement, Rising Edges & Falling Edges

11.3.5 Quadrature

Quadrature mode uses two HSC inputs, any of the four HSC inputs can be assigned for this purpose.

Quadrature mode works much like the totalizer except the accumulator will automatically increment or decrement based on the rotation phase of the two inputs. See the following example for more details. Quadrature inputs are typically used for reporting the value of an encoder.

Two modes are available for quadrature that select whether the accumulator counts up or down when the phase of input 1 leads input 2. Check your encoder's documentation to determine the output form it uses, or try both modes to determine if the encoder counts up when expected.

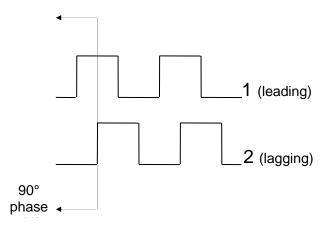


Figure 11.5 – Quadrature

Using the above waveforms and a HSC input configuration of "Quadrature" - "1 leads 2, count up," the accumulator will count up when 1 is rising and 2 is low, 1 is high and 2 is rising, 1 is falling and 2 is high, and when 1 is low and 2 is falling. This results in four (4) counts per revolution. So in order to determine the number of cycles, the accumulator would have to be divided by four (4).

Marker reset operation is configured in the special operations and can be assigned to any of the four (4) high speed inputs or can be assigned to be controlled by a "Q" bit in ladder.

NOTE: The quadrature mode enables the Disable, Latch, Preload, Clear, and Marker special functions. Please see section <u>11.2</u> for details.

11.3.6 Register Match

All counter modes support a register match function. When the accumulator value matches the Match 1 or Match 2 value setup in %AQ registers, a high speed output with either turn on, turn off, or toggle based on settings in Cscape.

11.4 HSC Functions Register Map

The register assignments for the high speed I/O can be moved via a setting in Cscape. The values shown are the DEFAULT values and may not match the same starting point as the values shown below.

Register	Description
AI401-402	Acc / Counter value (Counter1)
AI403-404	Latch Value (Counter1)
AI405-406	Acc / Counter value (Counter2)
AI407-408	Latch Value (Counter2)
AI409-410	Acc / Counter value (Counter3)
AI411-412	Latch Value (Counter3)
AI413-414	Acc / Counter value (Counter4)
AI415-416	Latch Value (Counter4)
Register	Description
AQ401-402	Preload Value (Counter1)
AQ403-404	Match1 Value(Counter1)
AQ405-406	Match2 Value(Counter1)
AQ407-408	Preload Value (Counter2)
AQ409-410	Match1 Value(Counter2)
AQ411-412	Match2 Value(Counter2)
AQ413-414	Preload Value (Counter3)
AQ415-416	Match1 Value(Counter3)
AQ417-418	Match2 Value(Counter3)
AQ419-420	Preload Value (Counter4)
AQ421-422	Match1 Value(Counter4)
AQ423-424	Match2 Value(Counter4)
Register	Description
Q1601	Latch Trigger (Counter1)
Q1602	Preload Trigger (Counter1)
Q1603	Clear Trigger (Counter1)
Q1604	Disable Counter (Counter1)
Q1605	Direction (Counter1)
Q1606	Underflow/Overflow/HSCQ Reset (Counter1) (High – Reset)
Q1607	Preload Disable(Counter1) (High – Disable)
Q1608	Latch Disable (Counter1)(High - Disable)
Q1609	Disable Marker Level (Counter1)
Q1610	Latch Marker Level (Counter1)
Q1611	Preload Marker Level (Counter1)
Q1612	Clear Marker Level (Counter1)
Q1613	Reserved (Counter1)
Q1614	Reserved (Counter1)
Q1615	Reserved (Counter1)

Q1616	Reserved (Counter1)
Q1617	Latch Trigger (Counter2)
Register	Description
Q1618	Preload Trigger (Counter2)
Q1619	Clear Trigger (Counter2)
Q1620	Disable Counter (Counter2)
Q1621	Direction (Counter2)
Q1622	Underflow/Overflow/HSCQ Reset (Counter2) (High – Reset)
Q1623	Preload Disable(Counter2) (High – Disable)
Q1624	Latch Disable (Counter2)(High - Disable)
Q1625	Disable Marker Level (Counter2)
Q1626	Latch Marker Level (Counter2)
Q1627	Preload Marker Level (Counter2)
Q1628	Clear Marker Level (Counter2)
Q1629	Reserved (Counter2)
Q1630	Reserved (Counter2)
Q1631	Reserved (Counter2)
Q1632	Reserved (Counter2)
Q1633	Latch Trigger (Counter3)
Q1634	Preload Trigger (Counter3)
Q1635	Clear Trigger (Counter3)
Q1636	Disable Counter (Counter3)
Q1637	Direction (Counter3)
Q1638	Underflow/Overflow/HSCQ Reset (Counter3) (High – Reset)
Q1639	Preload Disable(Counter3) (High – Disable)
Q1640	Latch Disable (Counter3)(High - Disable)
Q1641	Reserved (Counter3)
Q1642	Reserved (Counter3)
Q1643	Reserved (Counter3)
Q1644	Reserved (Counter3)
Q1645	Reserved (Counter3)
Q1646	Reserved (Counter3)
Q1647	Reserved (Counter3)
Q1648	Reserved (Counter3)
Q1649	Latch Trigger (Counter4)
Q1650	Preload Trigger (Counter4)
Q1651	Clear Trigger (Counter4)
Q1652	Disable Counter (Counter4)
Q1653	Direction (Counter4)
Q1654	Underflow/Overflow/HSCQ Reset (Counter4) (High – Reset)
Q1655	Preload Disable(Counter4) (High – Disable)

Q1656	Latch Disable (Counter4)(High - Disable)
Q1657	Reserved (Counter4)
Register	Description
Q1658	Reserved (Counter4)
Q1659	Reserved (Counter4)
Q1660	Reserved (Counter4)
Q1661	Reserved (Counter4)
Q1662	Reserved (Counter4)
Q1663	Reserved (Counter4)
Q1664	Reserved (Counter4)
Register	Description
11601	Overflow Flag (Counter1)
11602	Underflow Flag (Counter1)
11603	HSCQ(Counter1)
11604	Reserved (Counter1)
I1605	Overflow Flag (Counter2)
11606	Underflow Flag (Counter2)
11607	HSCQ(Counter2)
11608	Reserved (Counter2)
11609	Overflow Flag (Counter3)
I1610	Underflow Flag (Counter3)
I1611	HSCQ(Counter3)
I1612	Reserved (Counter3)
I1613	Overflow Flag (Counter4)
I1614	Underflow Flag (Counter4)
I1615	HSCQ(Counter4)
I1616	Reserved (Counter4)

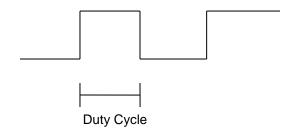
Table 11.4 HSC Functions Register Map

11.5 High Speed Output Functions

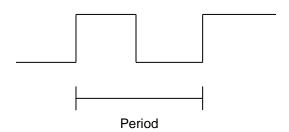
On units that support High Speed Output functions, two dedicated outputs are available that can be configured for one of four modes of operation. Those modes are Normal, PWM, HSC Match, and Stepper.

11.5.1 Normal

When either Q1 or Q2 is configured for Normal operation, the digital output registers %Q1 and %Q2 drives that respective output.



11.5.2 PWM


When either Q1 or Q2 is configured for PWM, the PWM function drives that respective output. Both PWM channels may be individually enabled and can have independent frequency and duty cycles.

The PWMs require two parameters (%AQs) to be set for operation. These parameters may be set at runtime.

Duty Cycle - The Duty Cycle is a 32 bit value from 0 to 32,000 indicating the relative duty cycle of the output. For example, a value of 8000 would indicate a 25% duty cycle, a value of 16,000 would indicate a 50% duty cycle. 0 turns the output off, and 32,000 turns the output on.

Frequency - The Frequency is a 32 bit value indicating the output frequency in Hertz. One over the frequency is the period.

Figures 11.6 & 11.7 – PWM, Two Parameters: Duty Cycle and Frequency

At controller power-up or during a download, the PWM output is maintained at zero until both the Frequency and the Duty cycle are loaded with non-zero values. When the controller is placed in stop mode, the state of the PWM outputs is dependent on the *PWM State on Controller Stop* configuration. This configuration allows for either hold-last-state or specific frequency and duty cycle counts. Specifying zero for either the period or duty causes the PWM output to remain low during stop mode.

NOTE: For standard I/O modules (1E3, 1E4 and 1E5 models), the maximum recommended PWM frequency is 5000Hz due to the limitations of built-in output circuitry. The **HE-XHSQ** generates 24V pulse outputs with a recommended max of 400,000Hz. The **HE-XHSQ-5** generates 5V pulse outputs with a recommended max of 1.0MHz. The add-on HSQ and HSQ-5 module can be added to the 1E2 unit for HSC function.

11.5.3 High Speed Counter Match

When either Q1 or Q2 is configured for HSC Output operation, their output state is based on a comparison between the counter accumulator and match registers. See details above in the high speed input section.

11.5.4 Stepper Function

The XL+ supports two stepper functions, one on each high speed output.

The Stepper requires five parameters (%AQs) to be set for operation. These parameters may be set at run-time but are 'latched' when the stepper is commanded to start:

	Sets the frequency for the first cycle during the acceleration phase and the
Start Frequency (pulses per second)	frequency of the last cycle during the acceleration phase and the frequency of the last cycle during the deceleration phase. When an acceleration or deceleration count is specified, the Start Frequency must be greater than 0 and must not exceed the run frequency or an error is generated.
Run Frequency (pulses per second)	Sets the frequency for the last cycle during the acceleration phase, the consistent frequency during the run phase, and the frequency of the first cycle during the deceleration mode. The Run Frequency must be greater than 0 and must not exceed 5000Hz (standard), 400,000Hz (HE-XHSQ), or 1.0 MHz (HE-XHSQ-5)
Acceleration Count	Sets the number of cycles to occur within the acceleration phase. The frequency of the cycles within this mode will vary linearly between the specified Start and Run frequency. The Accel count must not equal 1 or an error is generated. Setting this value to zero disables this phase.
Run Count	Sets the number of cycles to occur within the run phase. The frequency of the cycles within this mode is constant at the specified Run frequency. The Run count may be any value. Setting this value to zero disables this phase.
Deceleration Count	Sets the number of cycles to occur within the deceleration phase. The frequency of the cycles within this phase will vary linearly between the specified Run and Stop frequency. The Decel count must not equal 1 or an error is generated. Setting this value to zero disables this phase.

The stepper provides two Boolean registers to provide stepper status:

Ready/Done	A high indication on this register indicates the stepper sequence can be started (i.e. not currently busy) and also when the move is completed.
Error	A high indication on this register indicates that one of the analog parameters specified above is invalid or the stepper action was aborted before the operation was complete. This register is cleared on the next start command if the error was corrected.

The stepper requires one discrete register to control the stepper action. Setting this register starts the stepper cycle. This register must remain set to complete the entire cycle. Clearing this register before the cycle is complete aborts the step sequence and sets the error bit.

NOTE: Setting the PLC mode to stop while the stepper is in operation causes the stepper output to immediately drop to zero and the current stepper count to be lost.

NOTE: The stepper output level may cause damage or be incompatible with some motor drive inputs. Consult drive documentation to determine if output level and type is compatible.

11.6 High Speed Output Functions Register Map

The register assignments for the high speed I/O can be moved via a setting in Cscape. The values shown are the DEFAULT values and may not match the same starting point as the values shown below.

Register	description		
AQ451 – 452	Duty Cycle (PWM1)		
AQ461 – 462	Duty Cycle (PWM2)		
AQ453 – 454	Frequency (PWM1)		
AQ463 – 464	Frequency (PWM2)		
AQ451 – 452	Start Frequency (Stepper1)		
AQ453 – 454	Run Frequency (Stepper1)		
AQ455 – 456	Acceleration Count (Stepper1)		
AQ457 – 458	Run Count(Stepper1)		
AQ459 – 460	Deceleration Count (Stepper1)		
AQ461 – 462	Start Frequency (Stepper2)		
AQ463 – 464	Run Frequency (Stepper2)		
AQ465 – 466	Acceleration Count (Stepper2)		
AQ467 – 468	Run Count(Stepper2)		
AQ469 – 470	Deceleration Count (Stepper2)		
Q1	Digital Out (Stepper1)		
Q2	Digital Out (Stepper2)		
I1649	Ready/Done (Stepper1)		
I1650	Error (Stepper1)		
I1651	Ready/Done (Stepper2)		
I1652	Error (Stepper2)		

^{*}Q30 and Q31 for model 2 using HSQ or HSQ-5 (necessary to start move)

Table 11.6 HSC Output Functions Register Map

11.7 PWM Examples

Example 1	Duty Cycle	Frequency
To get a 50% Duty Cycle @ 10 kHz waveform on PWM1:	Set %AQ421-422 = 16,000	Set %AQ423-424 = 10,000

Example 2	Duty Cycle	Frequency
To get a 50% Duty Cycle on PW1 and	Set %AQ421-422 = 16,000	Set %AQ423-424 = 1,000
90 % Duty Cycle on PWM2 @ 1 kHz waveform:	Set %AQ431-432 = 28,800 (duty cycle (32000 * 0.9))	Set %AQ433-434 = 1,000

Example 3	Duty Cycle	Frequency
To turn PWM 1 output ON all the time	Set %AQ421-422 = 32,000	Set %AQ423-424 = Any Value

Example 4	Duty Cycle	Frequency
To turn PWM 1 output OFF all the time	Set %AQ421-422 = 0	Set %AQ423-424 = Any Value

11.8 STP Examples

Example 1	Start Frequency	Run Frequency	Accel Count	Run Count	Decel Count
10,000,000	Set %AQ421 =	Set %AQ422 =	Set %AQ423-4 =	Set %AQ425-6 =	Set %AQ427-8 =
steps control sequence	2500 (Hz)	5000 (Hz)	1,000,000 (Steps)	8,000,000 (Steps)	1,0000,000 (Steps)

When the start bit is energized, the example starts at 2.5 kHz and ramps up to 5 kHz during the first 1,000,000 steps. Then, it runs at 5 kHz for the next 8,000,000 steps. Finally, during the last 1,000,000 steps it slows to a stop.

Example 2	Start Frequency	Run Frequency	Accel Count	Run Count	Decel Count
5,000,000	Set %AQ421 =	Set %AQ422 =	Set %AQ423-4 =	Set %AQ425-6 =	Set %AQ427-8 =
steps control	500 (Hz)	1000 (Hz)	2,000,000 (Steps)	2,000,000 (Steps)	1,000,000 (Steps)
sequence	300 (112)	1000 (112)	2,000,000 (Steps)	2,000,000 (Steps)	1,000,000 (Steps)

When the start bit is energized, the example starts at 0.5 kHz and ramps up to 1 kHz during the first 2,000,000 steps. Then, it runs at 1 kHz for the next 2,000,000 steps. Finally, during the last 1,000,000 steps it slows to a stop.

Example 3	Start Frequency	Run Frequency	Accel Count	Run Count	Decel Count
6,000,000	Set %AQ421 =	Set %AQ422 =	Set %AQ423-4 =	Set %AQ425-6 =	Set %AQ427-8 =
steps control	50 (Hz)	250 (Hz)	150,000 (Steps)	5,500,000 (Steps)	350,000 (Steps)
sequence	30 (112)	230 (112)	130,000 (3teps)	3,300,000 (3teps)	330,000 (3teps)

When the start bit is energized, the following example starts at 50 Hz and ramps up to 250 Hz during the first 150,000 steps. Then, it runs at 250 Hz for the next 5,500,000 steps. During the last 350,000 steps, it slows to a stop.

NOTE: Prior to the start of a move, the Ready/Done bit for that channel must be ON (%I1617 or %I1619 for channel 1 and 2 respectfully). The Ready/Done bit will turn OFF during the move, and then back ON once the move is completed.

NOTE: The pulse generation hardware on the XL+ can generate any frequency that can be evenly divided into 10Mhz (10,000,000 Hz) under the maximum recommended frequencies for each model. This results in a very smooth operation at lower frequencies, with a progressively choppier operation at higher frequencies, as the units reach their maximum recommended frequency.

CHAPTER 12: SYSTEM SETTINGS AND ADJUSTMENTS

12.1 System Menu - Overview

The XL+ has a built-in System Menu, which lets the user view System Settings and makes adjustments. To start the System Menu, press the SYSTEM key (or set %SR3 to 1), which will display the Main Menu. Then use the \downarrow and \uparrow (Up Arrow or Down Arrow) keys to select a **Main Menu** item and press **Enter** (Return Arrow) to display the item's Sub-Menu.

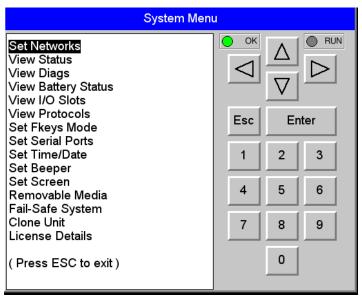


Figure 12.1 – System Menu (XL+) Screenshot

12.2 System Menu – Navigation and Editing

As mentioned above, the System Menu is started by pressing the System key on the XL+. Next press **ESC** to exit the System Menu, or use ↓ and ↑ to select an item and press **Enter** to display the item's Sub-Menu.

A Sub-Menu generally shows a list of System Settings and their values. After opening a Sub-Menu, if any of its System Settings are editable, the first System Setting that can be edited is highlighted. If desired, the \downarrow and \uparrow keys can be used to select a different System Setting to be edited.

At this point, either press **ESC** to exit the Sub-Menu (returning to the Main Menu), or press **Enter** to edit the highlighted System Setting. If **Enter** is pressed, the System Setting's value will be highlighted, indicating that it is ready to be modified.

When modifying a System Setting's value, use either the arrow keys ($\leftarrow \rightarrow \downarrow \uparrow$) numeric keys, or the appropriate touch screen icons to select a new value.

or the

The arrow keys are used to edit System Settings that have just a few possible values. Each time the arrow key is pressed, a new possible value is displayed. When the desired value appears, press the **Enter** key to save it; otherwise press the **ESC** key to cancel the edit.

The numeric keys are normally used to enter numeric System Settings.

In addition, to edit a single numeric digit, use the \leftarrow or \rightarrow key to select the digit, and then either press a numeric key or use \downarrow or \uparrow to modify the digit. In any case, after entering the new desired value, press the **Enter** key to save it; otherwise press the **ESC** key to cancel the edit.

12.3 System Menu – Details

The following sections describe each of the Sub-Menus in detail.

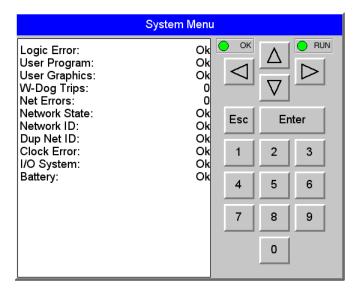
12.3.1 Set Networks

This sub menu allows setting for the CAN and Ethernet network to be viewed or changed.

CAN Ok?	Yes= CAN1 connected to a CAN network and No= Not ready to communicate on CAN network	<u> </u>
CAN ID	1 to 253 = This node's CsCAN Network ID; mi	ust be unique on network
CAN Baud	125 KB = 125 KBaud CAN network	500 KB = 500 KBaud CAN network
CAN Daud	250 KB = 250 KBaud CAN network	1 MB = 1 MBaud CAN network
MAC ID	Displays the Ethernet MAC ID of the unit	
IP	Displays the Ethernet IP address of the unit	
NetM	Displays the Ethernet net mask of the unit	
GatWy	Displays the Ethernet gateway of the unit	

NOTE: The IP address, Net Mask, and Gateway can be changed from the system menu. This is designed for commissioning or temporary field changes. The actual parameters are defined in Cscape under the Ethernet configuration and are reverted to whenever the unit goes from idle to run mode.

12.3.2 View Status



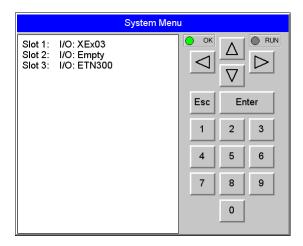
The View Status Sub-Menu displays up to 19 System Settings. Only the OCS Mode System Setting is editable.

Model XW1yz= Model number of this XL+ OCS unit 1yz = indicates the installed I/O module 00 = no I/O module Idle = XL+ OCS is in Idle mode DoIO = XL+ OCS is in Do I/O mode Run = XL+ OCS is in Run mode Scan Rate(mS) 0.0 = XL+ OCS is not in Run mode 0.1 to 999.9= Average number of mS for each ladder scan OCS Net Use % 0.0 to 100.0 = CAN network bandwidth % used by this XL+ OCS node All Net Use % 0.0 to 100.0 = CAN network bandwidth % used by all nodes Ladder Size x = Number of bytes in application ladder program Config Size x = Number of bytes in application I/O configuration Graphics Size x = Number of bytes in application graphic screens
OCS Mode Idle = XL+ OCS is in Idle mode DoIO = XL+ OCS is in Do I/O mode Run = XL+ OCS is in Run mode O.1 to 999.9= Average number of mS for each ladder scan OCS Net Use % O.0 to 100.0 = CAN network bandwidth % used by this XL+ OCS node All Net Use % O.0 to 100.0 = CAN network bandwidth % used by all nodes Ladder Size x = Number of bytes in application ladder program Config Size x = Number of bytes in application I/O configuration
OCS Mode Idle = XL+ OCS is in Idle mode DoIO = XL+ OCS is in Do I/O mode Run = XL+ OCS is in Run mode O.0 = XL+ OCS is not in Run mode O.1 to 999.9= Average number of mS for each ladder scan OCS Net Use % O.0 to 100.0 = CAN network bandwidth % used by this XL+ OCS node All Net Use % O.0 to 100.0 = CAN network bandwidth % used by all nodes Ladder Size x = Number of bytes in application ladder program Config Size x = Number of bytes in application I/O configuration
OCS Mode DoIO = XL+ OCS is in Do I/O mode Run = XL+ OCS is in Run mode 0.0 = XL+ OCS is not in Run mode 0.1 to 999.9= Average number of mS for each ladder scan OCS Net Use % 0.0 to 100.0 = CAN network bandwidth % used by this XL+ OCS node All Net Use % 0.0 to 100.0 = CAN network bandwidth % used by all nodes Ladder Size x = Number of bytes in application ladder program Config Size x = Number of bytes in application I/O configuration
Run = XL+ OCS is in Run mode 0.0 = XL+ OCS is not in Run mode 0.1 to 999.9= Average number of mS for each ladder scan OCS Net Use % 0.0 to 100.0 = CAN network bandwidth % used by this XL+ OCS node All Net Use % 0.0 to 100.0 = CAN network bandwidth % used by all nodes Ladder Size x = Number of bytes in application ladder program Config Size x = Number of bytes in application I/O configuration
Scan Rate(mS) 0.0 = XL+ OCS is not in Run mode 0.1 to 999.9= Average number of mS for each ladder scan OCS Net Use % 0.0 to 100.0 = CAN network bandwidth % used by this XL+ OCS node All Net Use % 0.0 to 100.0 = CAN network bandwidth % used by all nodes Ladder Size x = Number of bytes in application ladder program Config Size x = Number of bytes in application I/O configuration
Scan Rate(mS)0.1 to 999.9= Average number of mS for each ladder scanOCS Net Use %0.0 to 100.0 = CAN network bandwidth % used by this XL+ OCS nodeAll Net Use %0.0 to 100.0 = CAN network bandwidth % used by all nodesLadder Sizex = Number of bytes in application ladder programConfig Sizex = Number of bytes in application I/O configuration
OCS Net Use % O.0 to 100.0 = CAN network bandwidth % used by this XL+ OCS node All Net Use % O.0 to 100.0 = CAN network bandwidth % used by all nodes Ladder Size x = Number of bytes in application ladder program Config Size x = Number of bytes in application I/O configuration
All Net Use % Ladder Size x = Number of bytes in application ladder program Config Size x = Number of bytes in application I/O configuration
Ladder Sizex = Number of bytes in application ladder programConfig Sizex = Number of bytes in application I/O configuration
Config Size x = Number of bytes in application I/O configuration
· · · · · · ·
Graphics Size y = Number of butes in application graphic screens
X = Number of bytes in application graphic screens
String Size x = Number of bytes in application string table
Bitmap Size x = Number of bytes in application bitmaps
Text Tbl Size x = Number of bytes in application text tables
Font Tbl Size x = Number of bytes in application font tables
Protocol Size x = Number of bytes in application downloaded protocols
SMS File Size x = Number of bytes in application SMS protocol configuration
Firmware Rev xx.yy = Current firmware version
OS Ver a.b.cd.yz = Current Operating System version
FPGA Rev x.y = Current FPGA version (High Speed IO Sub System)
InitRD Rev x.yz = Bootloader version
Self-Test Ok = All power-on self-tests passed
Fault = One or more power-on self-tests failed

12.3.3 View Diags

The View Diags Sub-Menu displays up to 11 System Diagnostics, none of which are editable.

The first two System Diagnostics are critical. If either of these indicate a Fault condition, the XL+ OCS will not enter or remain in Run mode, and the problem must be investigated and corrected.


Logic Error:	Ok = All executed ladder instructions are legal for loaded firmware Fault = A ladder instruction <u>not</u> supported by firmware was found
User Program:	Ok = Ladder program and I/O configuration loaded successfully Fault = Ladder program or I/O configuration not loaded or load failed

The last nine System Diagnostics are informational. If any of these indicate a warning condition, the XL+ OCS can still enter and remain in Run mode, but the problem should be investigated and corrected.

User Graphics	Ok = Application graphics objects loaded successfully.
Oser Graphics	Fault = Application graphics objects not loaded or load failed.
W-Dog Trips	0 = Watchdog timer has not tripped since the last power-up.
W-Dog Trips	x = Number of times watchdog timer has tripped.
Net Errors	0 = No CAN network bus-off errors have occurred.
Net Errors	x = Number of CAN network bus-off errors that have occurred.
Network State	Ok = At least one other node was found on the CAN network.
Network State	Warning = No other nodes were found on the CAN network.
Network ID	Ok = This node's CAN Network ID is in the range 1 to 253.
Network ib	Warning = This node's CAN Network ID was out of range at power-up.
Dun Not ID	Ok = This node's Network ID is unique on the CAN network.
Dup Net ID	Warning = This node's Network ID is duplicated in another node.
Clock Error	Ok = Time and date have been set.
CIOCK ETTOI	Warning = Time and date need to be set.
I/O System	Ok = I/O configuration matches the installed I/O and COM modules.
i/O System	Warning = I/O configuration needs updating to match installed modules.
Rattory	Ok = Backup battery operating properly.
Battery	Warning = Backup battery needs to be replaced.

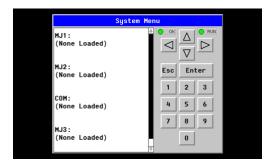
12.3.4 View I/O Slots

The View I/O Slots Sub-Menu displays three System Settings, none of which may be edited.

Internal to the XL+ OCS, there is a CPU board, and up to two installed modules. Model HE-EXV1EO has no installed I/O or COM modules. All other models have an I/O module and can have a user-installed COM module.

Depending on which I/O module is installed and which I/O module has been configured by Cscape, one of the following six System Settings should appear for Slot 1:

Slot 1: I/O: Empty	= No I/O module installed or configured
Slot 1:*Unsupported	= Unsupported I/O module installed
Slot 1:-I/O Missing	= No I/O module installed but an I/O module is configured
Slot 1:+I/O: XExyy	= yy I/O module installed but no I/O module configured
Slot 1:?I/O: XExyy	= yy I/O module installed but another I/O module configured
Slot 1: I/O: XExyy	= yy I/O module installed and configured properly


Depending on the COM module that is installed and the COM module that has been configured by Cscape, one of the following six System Settings appears for Slot 2:

Slot 2: I/O: Empty	= No COM module installed or configured
Slot 2:*Unsupported	= Unsupported COM module installed
Slot 2:-I/O Missing	= No COM module installed but a COM module is configured
Slot 2:+I/O: XzC	= z COM module installed but no COM module configured
Slot 2:?I/O: XzC	= z COM module installed but another COM module configured
Slot 2: I/O: XzC	= z COM module installed and configured properly

Slot 3: I/O: ETN300	= ETN300 has been configured through Cscape
---------------------	---

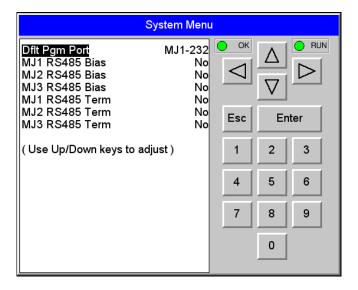
12.3.5 View Protocols

The View Protocols Sub-Menu displays two System Settings, neither of which may be edited.

The MJ1, MJ2, and MJ3 serial ports support downloadable protocols. To assign a downloadable protocol to an XL+ OCS serial port, select the **Protocol Config** item in Cscape's Program menu and then set up a protocol.

In the View Protocols Sub-Menu, the currently downloaded protocol, if any, and its version number are displayed for each of MJ1, MJ2 COM board and MJ3.

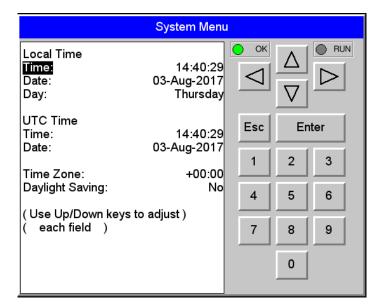
12.3.6 Set Fkeys Mode



The Set Fkeys Sub-Menu displays two System Settings, both of which may be edited.

Fkeys	Momentary= %K1-7 bits go On & Off as F1-F7 are pressed & released Toggle= %K1-7 bits toggle each time F1-F7 are pressed
SYS_Fn enable	Yes = Reset and all clear system functions enabled No = Reset and all clear system functions disabled

12.3.7 Set Serial Ports



The Set Serial Ports Sub-Menu displays three System Settings, all of which may be edited, and one optional item. For the **Dflt Pgm Port** System setting, only MJ1-232 can be selected, unless a Modem (XMC) COM module is installed.

Dflt Pgm Port	MJ1-232= MJ1 RS232 port is the default programming port
	Modem= Modem COM module is the default programming port
MJ1 RS485 Bias	No = MJ1 RS485 bias resistors are <u>not</u> switched in
	Yes = MJ1 RS485 bias resistors are switched in
MJ2 RS485 Bias	No = MJ2 RS485 bias resistors are <u>not</u> switched in
	Yes = MJ2 RS485 bias resistors are switched in
MJ3 RS485 Bias	No = MJ3 R5485 bias resistors are <u>not</u> switched in
	Yes = MJ3 R5485 bias resistors are switched in

12.3.8 Set Time/Date

The Set Time/Date Sub-Menu displays three System Settings. **Time** and **Date** may be edited, and **Day** is automatically calculated from the **Date** setting. Note that **Time** and **Date** are split into three fields each, all of which may be edited. Use \leftarrow or \rightarrow to select a field and then use \downarrow or \uparrow to edit the field.

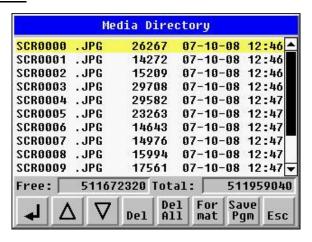
Time	16:09:49 = Current time (hours:minutes:seconds in 24-hour format)
Date	10-Jun-2013 = Current date (day-month-year)
Day	Monday = Current day of week calculated from the Date setting

12.3.9 Set Beeper

The Set Beeper Sub-Menu displays one System Setting, which may be edited.

Beeper enable	Yes (default) = Enables beeper
	No = Disables beeper (does NOT affect ladder access)

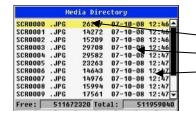
12.3.10 Set Screen


The Set Screen Sub-Menu displays four System Settings, all of which may be edited.

Saver enable	Yes = Enable screen saver
	No (default) = Disable screen saver
Timeout (min)	5 - 1200 = Amount of time in minutes to expire with NO touch activity
	before activating screen saver (black screen)
Popup Status	Off (default) = Disable popup status
	Warning = Display popup status only if controller status changes to
	NOT Ok or NOT Run mode
	On = Display popup status on any controller status change
Update Time (mS)	2 - 50 = Maximum amount of time to allow for graphics update per scan

12.3.11 Removable Media

The Removable Media Sub-Menu displays the Removable Media Manager. Having selected Removable Media from the Main Menu, one of four Sub-Menu screens will appear:


= No MicroSD card has been installed in the Memory slot

= MicroSD card is installed, but it is still initializing.

= MicroSD card is installed and initialized, but contains no files.

= MicroSD card is installed and initialized, and it contains files.

Shows size of highlighted file or shows <DIR> if directory is highlighted.
Shows the date file or directory was created or last modified.
Shows the time file or directory was created or last modified.

If a directory name is highlighted, pressing **Enter** will switch to that directory showing its files and sub-directories. In a sub-directory, highlighting ".." (dot dot) and pressing **Enter** will move up one directory.

12.3.12 Fail - Safe System

The Fail-Safe System is a set of features that allow an application to continue running in the event of certain types of "soft" failures. These "soft" failures include:

- Battery power loss
- Battery-Backed Register RAM or Application Flash corruption due to, for example, an excessive EMI event.

Selecting "Fail-Safe System" menu will open the following menu screen:

Selecting Backup/Restore Data displays the following screen in:

Backup	= Copies Battery Backed RAM contents on to the onboard FLASH memory of the OCS.
Restore	= Copies the backed up data from onboard FLASH to the battery backed RAM.
Clear Backup	= The backup data will be erased from the onboard FLASH.
Exit	= Goes back to previous menu.

12.3.13 Enable AutoRun

"Enable AutoRun" displays the following options which can be selected:

Enable AutoRun

No = OCS will be in IDLE mode after AutoLoad or Automatic Restore.

Yes = OCS will automatically be placed into RUN mode after AutoLoad or Automatic Restore.

12.3.13 Enable AutoLoad

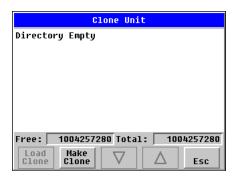
"Enable AutoLoad" displays the following options which can be selected:

Enable AutoLoad

No = Does not load AUTOLOAD.PGM automatically when application program is absent or corrupted.

Yes = Loads AUTOLOAD.PGM file automatically from RM when application program is absent or corrupted.

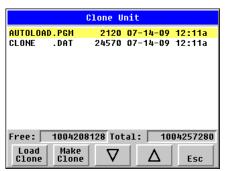
12.3.14 Clone Unit


'Clone Unit' feature allows the user to "clone" the OCS of the exact same model. This feature "clones" application program and unit settings stored in battery backed RAM of an OCS into the RM (refer Removable Media Chapter 9 for details on using RM). It can then be used to clone a different OCS (exact same model).

This feature can be used when:

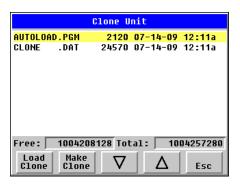
- Replacing an OCS by another unit of the same model.
- Duplicating or "clone" units without a PC.

Clone


Selecting "Clone Unit" menu will open the following menu screen:

NOTE: Free/Total – displays number of free and total bytes in Removable Media.

Selecting Make Clone brings up the confirmation screen. Upon confirmation, the OCS will create two new files in the root directory of the Removable Media Drive as shown below:



AUTOLOAD.PGM	Application file
CLONE.DAT	File having all unit settings and register values from Battery Backed RAM

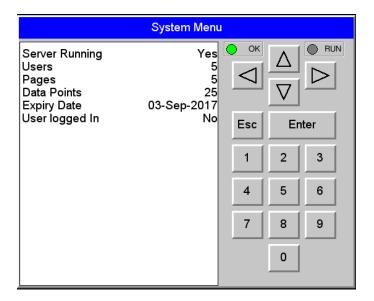
12.3.15 Load Clone

Selecting "Clone Unit" menu will open the following menu screen. Select "Load Clone".

NOTE: For security enabled files, Load Clone asks for password validation before loading the application.

12.4 Touch Screen Calibration

The touch screen is calibrated at the factory and rarely needs modification. However, if actual touch locations do not appear to correspond with responding objects on the display, field adjustment is available. To access the field adjustable touch screen calibration dialog, press and hold System key for longer than two (2) seconds and the "System Recovery Screen" will appear. Press "Touch Calibration" and then follow the prompts on the screen. Thereafter, use a plastic tip stylus and follow the dialog instructions.


NOTE: System key combinations can be locked out from user access. If the SYS-F1 key combination does NOT respond, the **SYS-Fn enable** option is likely disabled. It can be enabled from the Set Fkeys Mode screen accessible from the System Menu.

Touch Calibration Screen

Please touch extreme Bottom-Left corner point

12.5 License Details

License details page displays the information about the WebMI license. The information can also be viewed from Cscape using the following %SR registers:

%SR209.3 - WebMI server status

%SR209.4 - WebMI user logged in status

%SR209.8 to SR209.16 - Number of users

%SR218 - Number of webpages

%SR219 - Number of Data Points

%SR220 to SR222 - Expiry date of WebMI License

CHAPTER 13: USER INTERFACE

13.1 Overview

This chapter presents the user interface (or operator view) of the XL+ and some of the model specific characteristics of the XL+ as compared to the rest of the OCS line. This chapter does NOT cover building screens or using the Cscape graphics editor. For instructions on creating screens and using the graphics editor, refer to the graphics editor help file.

The following aspects are discussed:

- Displaying and entering data
- Alpha-numeric data entry
- Navigating around screens
- Beeper acknowledgement
- Touch (slip) sensitivity
- Alarm log dialog
- RM dialog
- Screen Saver
- Dimmer

13.2 Displaying and Entering Data

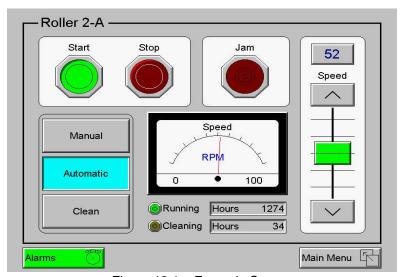


Figure 13.1 – Example Screen

Multiple objects are provided for displaying data such as virtual panel lights, push buttons, numeric value displays, bar graphs, meters, graphs and animated bitmaps. On the XL+, these graphical objects (through ladder manipulation of attribute bits) can change color, flash, or change visibility to attract operator attention.

On objects that accept user input, the input is provided by touching the object or alternately changing an OCS register (i.e. function key registers). Objects that allow input generally have a raised 3D appearance. An exception is the binary type objects, such as buttons, which are shown in a depressed 3D appearance when in the ON state. Objects that normally accept touch input may be disabled through program control (through ladder manipulation of an attribute bit). If an object is disabled, the object's representation changes to a 2D appearance.

On objects that represent non-discrete information, more action may be required beyond that of simply touching the object. For example, the slider object requires the operator to touch and *slide* the control in

the direction desired. Alternately, alpha-numeric entry objects invoke a pop-up alpha-numeric keypad for additional user input. The alpha-numeric keypad is discussed below.

NOTE: If the numeric entry object displays >>>>>, the value is too big to display in the field or is above the maximum for an editable field. Likewise, if the numeric entry object displays <<<<< in a numeric field, the value is too small to display or is below the minimum for an editable field.

13.3 Alpha-Numeric Keypad

To allow entry of a specific number or text, several of the input objects invoke a pop-up alpha-numeric keypad when the object is touched. An example of the alpha-numeric keypad invoked from a numeric input object is shown in Figure 13.2. Once invoked, the operator may touch the appropriate keys to enter a specific value. When entering a value, the alpha-numeric keypad is in one of two modes [new-value or edit-value].

New-Value Mode

Generally, when the alpha-numeric keypad is first invoked, it is placed in new-value mode. Initially, the alpha-numeric keypad displays the current value with all the digits being highlighted. Once the first digit is entered, the current value is erased from the display and the new digit is placed in the first location. Thereafter, no digits are highlighted and new digits are added to the rightmost position while the other digits are shifted left.

Edit-Value Mode

Edit-value mode may be entered from the initial new-value mode by pressing either the left or right arrow key before any digit key is pressed. The result will be a single character highlighted. The user may then either touch a key to change the digit at the selected position or the up and down arrows may be used to add or subtract (respectively) from the selected digit. The user may then use the left or right arrow keys to select a new position.

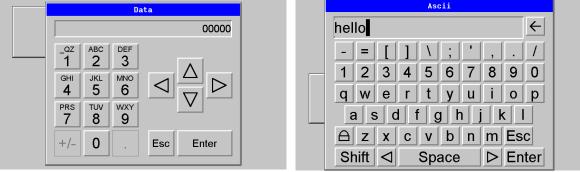
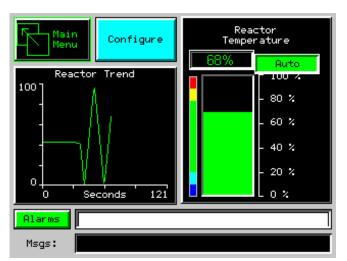


Figure 13.2 – Alpha-numeric Keypad and ASCII Keypad

Once the desired value is entered, pressing the *Enter* key moves that value into the object (and the corresponding OCS register) and the alpha-numeric keypad disappears. Alternately, pressing the *ESC* key any time before the *Enter* key cancels the operation, leaves the objects current value unchanged, and the alpha-numeric keypad disappears.

NOTE: Each numeric entry object has a configured minimum and maximum value. If the operator enters a value outside of the configured range, the new value is ignored when *Enter* is pressed, and the current object value is NOT changed.



Since the alpha-numeric keypad services several different graphical objects, certain keys on the alpha-numeric keypad may be disabled (grayed) when the keypad is invoked for certain objects. The following describes the alpha-numeric keypad variation based on object.

Numeric Object	When editing a numeric value, the [+/-] or the [.] key are disabled (grayed) if the object is NOT configured for floating-point value or a signed value.
Password Object	When editing a password value, the arrow keys, [+/-], and the [.] keys are disabled. Additionally, overwrite mode is disabled. When entering digits, the pop-up keypad hides the value by displaying '*' alternately for each digit.
ASCII Object	When editing an ASCII value, an ASCII keypad is displayed as shown figure 13.2. The ASCII keypad has 3 modes, numeric, symbols, and alpha. In Alpha mode the Caps Lock button may be pressed to access capital letters. When you first enter this editor typing a character will overwrite the entire old string and start a new entry. You may press the back space arrow to delete the previous character. Pressing Enter will save the entry; pressing ESC will cancel the edit and return the string to the previous value.
Text Table Object	When editing a Text Table Object, all the keys except the Up and Down arrow keys are grayed and disabled. The next text selection is made by pressing either the Up or Down arrow.
Time/Date Object	When editing a Time/Date Table Object, all the keys except the Up, Down, Left, and Right arrow keys are grayed and disabled. The specific field (i.e. hour or minutes) is selected using the Left and Right arrows. The value in the selected field is changed by pressing either the Up or Down arrow.

13.4 Screen Navigation

To allow the operator to change screens, a **screen jump object** is generally used. This object may be visually **represented as a 3-D button** (responding to touch) or remain invisible and logically tied to an OCS register. An optional system ICON may be configured for display along with the legend, which aids in identifying the object as one that causes a screen change (shown below in figure 13.3).

Screen jumps can also be triggered on other keys or based on control logic for more advanced applications. To allow the operator to change screens, a screen jump object is generally used. This object may be visually represented as a button (responding to touch) or remain invisible and logically tied to an OCS register. An optional system ICON may be configured for display along with the legend, which aids in identifying the object as one that causes a screen change.

Figure 13.3 - Typical Screen Jump Object

13.5 Ladder-Based Screen Navigation

Ladder logic can use several techniques to control screen navigation. Coils can be tied to %D registers to make them screen coils. These coils have two modes: switch and alarm. If the ladder program energizes an alarm display coil, the screen associated with this coil is displayed and overrides the normal user screens. This is designed to show alarm conditions or to display other ladder-detected events. When the text coil is de-energized, the previous screen that was being viewed before the alarm is returned.

The switch display coil switches to the associated screen when it is energized. Once it is de-energized, the screen remains until it is switched by the user or ladder.

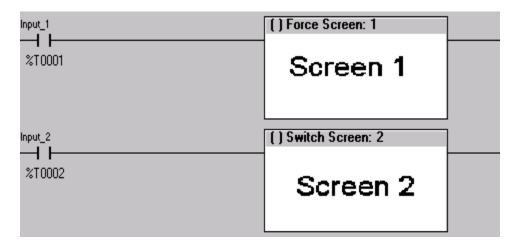


Figure 13.4 – Force and Switch Coils in Ladder Programming

There is also a system register that can be used to for control based screen navigation. %SR1 can be read to determine the current screen or written to change the current screen.

Refer to the on-line help in Cscape for more information on control-based screen navigation.

13.6 Beeper Acknowledgement

The XL+ contains an internal beeper that provides an audible acknowledgment when an operator touches a graphic object that accepts touch input. When the graphic object is enabled, a short 5ms tone is emitted. When the graphic object is disabled, a longer 100ms tone is emitted to enounce that graphical object is not currently accepting the touch input.

If beep acknowledgement is not desired, the beeper function can be disabled from the system menu.

13.7 Touch (Slip) Sensitivity

Touch *slip* sensitivity is preset to meet most applications; however, adjustment is available to reduce the sensitivity for touch release. That is, once a graphical object (button) is touched and held by a finger, the default touch *slip* sensitivity allows for a slight *slip* of the finger on the graphical object before the XL+ assumes touch has been released (equates to approximately a quarter inch of movement with a stylus).

In some applications (such as jog buttons) where the operator is pushing a button for a period of time, the amount of *slip* while holding a button pressed may exceed the default sensitivity. To increase the amount of tolerable *slip* and prevent false releases of the button, the XL+ allows adjustment of the allowable *slide* up to 5x the default value.

To enable the touch (slip) sensitivity, first an OCS data register must be allocated through the Graphics editor Configuration menu for Display Settings. Once a Touch Sensitivity register is assigned, that register may be modified [range = 1(Low) to 5 (High)] to the desired slide amount. If a value outside the valid range is entered in the touch sensitivity register, it is ignored and the last valid value is used.

13.8 Alarms

Alarm presentation to the operator is highly configurable and beyond the scope of this document to describe fully. For more information refer to the graphics editor help file. This section presents a typical configuration thereby providing an introductory description on what the operator should expect.

The alarm object is generally used to enunciate alarms to the operator. While the display characteristics of this object is configurable, it is generally displayed as a button that changes colors to indicate the highest state of the alarm(s) in the alarm group it is monitoring. The following indicates the priority of the alarm states and the default colors associated with these states.

Highest	(Red)	Unacknowledged Alarms Exist
_	(Yellow)	Acknowledged Alarms Exist
Lowest	(Green)	No Alarms Exist

Figure 13.5 – Alarm Object

To view, acknowledge and/or clear alarms, the operator must access the alarm viewer. This is accomplished by touching an (enabled) alarm object. When accessed, the alarm viewer is displayed as pop-up alarm viewer dialog similar to that shown in Figure 13.6.

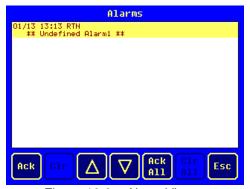


Figure 13.6 – Alarm Viewer

The currently selected entry is indicated by a yellow highlight which can be moved up or down by touching the arrow buttons or by directly touching an entry. If more entries exist than can fit on the page, a scroll bar is displayed on the right side that also indicates the current relative position.

The current state of the displayed alarm is indicated by its color and optionally by an abbreviated indicator after the date/time stamp (ALM, ACK, RTN). The operator can acknowledge an alarm by selecting it from the list and touching the ACK button. The operator can also clear an alarm if that function is enabled in the alarm object. If not enabled, the **Clear** buttons are grayed and do not respond to touch. Once view operations are complete, simply touch the *Esc* button to remove the pop-up alarm viewer.

NOTE: OCS register %SR181 is reserved for unacknowledged alarms, and %SR182 is available for active alarms. The screen designer may implement these registers to switch screens or activate the beeper to attract the operator's attention.

13.9 Removable Media

The removable media object is generally used to inform the operator on the current state of the removable media device and allow access to its file structure. The removable media object is displayed as a button that changes colors to indicate the current state of the removable media device. The following indicates the device states and the default colors associated with these states.

Highest	(Red)	Device Error
_	(Yellow)	Device Full (threshold adjustable)
Lowest	(Green)	Device OK

Figure 13.7 – Removable Media Object

To view and perform file operations, the operator must access the removable viewer. This is accomplished by either touching an (enabled) removable media object or through the system menu. When accessed, the removable media viewer is displayed as pop-up removable media dialog similar to that shown in Figure 13.8.

NOTE: The removable media object can be configured to open the removable media viewer at a certain directory complete with restrictions on transversing back up the file path. This may be used to restrict operator access to non-critical files.

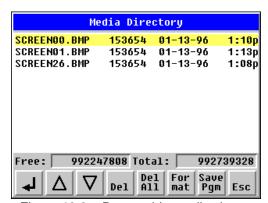


Figure 13.8 - Removable media viewer

The currently selected entry is indicated by a yellow highlight which can be moved up or down by touching the arrow buttons or by directly touching an entry. If more entries exist than can fit on the page, a scroll bar is displayed on the right side that also indicates the current relative position.

File operations are accomplished by pressing the appropriate button at the bottom of the removable media viewer. The configuration of the removable media object that invokes the removable media viewer defines what buttons are enabled and available to the user. A button is grayed and does not respond to touch if configured as disabled.

The (Enter) button (if enabled) performs certain operations based on the selected file's type:

	change display to parent directory	
<dir></dir>	change display to child directory	
bmp, jpeg	display bitmap (if compatible format)	
pgm	load application (if compatible model and version)	

Alternately, the (enter) button can be configured to simply load the ASCII representation of the file path (including the file name) to a group of OCS registers. That pathname can then be used by ladder for opening and manipulating that file.

Once view operations are complete, simply touch the *Esc* button to remove the pop-up removable media viewer.

It is best practice to discourage removal of removable media devices by the operator while a write operation is in process. This can be accomplished by adding a push button to the screen (tied to %SR174.1), which is used in the logic program to lock out write operations prior to media removal. An indicator object (tied to %SR174.2) can also be added to the screen, which provides positive confirmation to the operator that it is safe to remove the media.

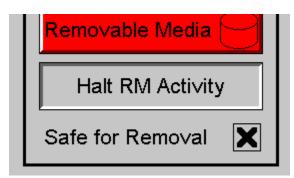


Figure 13.9 – Example application segment for safe removal of removable media

13.10 Screen Saver

The XL+ screen backlight life is typically five (5) years when in continuous use. If the application does not require interaction with the XL+ for long periods of time, the backlight life can be extended by using the screen saver function. When enabled through the system menu, the backlight is shut off (screen goes black) after a specified time of no-touch activity on the screen. When the screen saver shuts off the backlight, any operator touch on the screen or reactivates the backlight.

NOTE: When the screen saver is active (backlight shut off), any initial touch activity on the screen to reactivate the backlight is otherwise ignored by the XL+. Any additional touch activity is also ignored by the XL+ for approximately one second thereafter.

It is possible for the application to temporarily disable the screen saver by generating a positive transition to %SR57.16 (coil only) at a rate faster than the screen saver timeout value. This may be desired while waiting for alarm acknowledgement.

13.11 Screen Brightness

The XL+ provides a feature that allows screen dimming for night operation. To enable this feature, the application must access and control system register %SR57 (Display Backlight Brightness). Screen brightness is continuously variable by driving %SR57 through the range of 100 (full bright) to 0 (full off). It is left to the screen designer on how to present a Screen Brightness control to the user, if required.

NOTE: The backlight life may be shorted when screen is dimmed or screen brightness is varied on a repetitive basis.

CHAPTER 14: REGISTERS

14.1 Register Definitions

When programming the XL+ OCS, data is stored in memory that is segmented into different types. This memory in the controller is referred to as registers. Different groups of registers are defined as either bits or words (16 bits). Multiple registers can usually be used to handle larger storage requirements. For example, 16 single bit registers can be used to store a word, or two 16 bit registers can be used to store a 32-bit value.

Table 14.1 - Types of Registers found in the XL+ OCS					
%Al Analog Input	16-bit input registers used to gather analog input data such as voltages, temperatures, and speed settings coming from an attached device.				
%AQ Analog Output 16-bit output registers used to send analog information such a voltages, level speed settings to an attached device.					
%D Display Bit These are digital flags used to control the displaying of screens on a unit which the ability to display a screen. If the bit is SET, the screen is displayed.					
%I Digital Input Single-bit input registers. Typically, an external switch is connected to the					
%K Key Bit	Single-bit flags used to give the programmer direct access to any front panel keys appearing on a unit.				
%M Retentive Bit	Retentive single-bit registers.				
%Q Digital Output	Single-bit output registers. Typically, these bits are connected to an actuator, indicator light or other physical outputs.				
%R General Purpose Register	Retentive 16-bit registers.				
%S System Bit Single-bit bit coils predefined for system use.					
%SR System Register 16-bit registers predefined for system use.					
6T Temporary Bit Non-retentive single-bit registers.					

14.2 Useful %S and %SR registers

Table 14.2 – Common %S Register Definitions				
Register	Description			
%S1	Indicate First Scan			
%S2	Network is OK			
%S3	10mS timebase			
%S4	100mS timebase			
%S5	1 second timebase			
%S6	I/O is OK			
%S7	Always ON			
%S8	Always OFF			
%S9	Pause 'n Load soon			
%S10	Pause 'n load done			
%S11	I/O being forced			
%S12	Forcing is enabled			
%S13	Network I/O is OK			
%S16	Ethernet COM module is OK			

Table 14.3 – %SR Registers				
Register	Name	Description Min Val Ma		Max Val
%SR1	USER_SCR	Current User Screen Number	Current User Screen Number 1 1023	
%SR2	ALRM_SCR	Current Alarm Screen Number (0=none) 0 1023		1023
%SR3	SYS_SCR	Current System Screen Number (0=none) 0 14		14
%SR4	SELF_TEST	Bit-Mapped Self-Test Result 0 65535		65535
%SR5	CS_MODE	Control Station Mode (0=Idle, 1=Do I/O, 2=Run)	0	2

		Table 14.3 – %SR Registers			
Register	Name	Description	Min Val	Max Val	
%SR6	SCAN_RATE	Average Scan Rate (/ 10)	-	1000	
%SR7	MIN_RATE	Minimum Scan Rate (/ 10)	-	1000	
%SR8	MAX_RATE	Maximum Scan Rate (/ 10)	-	1000	
%SR9-10	EDIT_BUF	Data Field Edit Buffer	0	2 ³² -1	
%SR11-12	LADDER_SIZE	Ladder Code Size	2	256K	
%SR 13-16	Reserved	-	-	-	
%SR17-18	IO_SIZE	I/O Configuration Table Size	16	127K	
%SR19-20	NET_SIZE	Network Configuration Table Size	34	1K	
%SR21-22	SD_SIZE	Security Data Table Size	-	-	
%SR23	LADDER_CRC	Ladder Code CRC	0	65535	
%SR 24-25	Reserved	-	-	-	
%SR26	IO_CRC	I/O Configuration Table CRC	0	65535	
%SR27	NET_CRC	Network Configuration Table CRC	0	65535	
%SR28	SD_CRC	Security Data Table CRC	0	65535	
%SR29	NET_ID	This Station's Primary Network ID (CsCAN)	1	253	
9/CD30	NET DAUD	Network Baud Rate (CsCAN)	_	2	
%SR30	NET_BAUD	(0=125KB; 1=250KB; 2=500KB; 3=1MB)	0	3	
		Network Mode (0=network <u>not</u> required; 1=network			
%SR31	NET_MODE	required; 2=network optimized;	0	3	
		3=network required and optimized)			
%SR32	LCD_CONT	LCD Display Contrast setting	0	255	
%SR33	FKEY_MODE	Function Key Mode (0=Momentary; 1=Toggle)	0	1	
		RS232 Serial Protocol Mode			
%SR34	SERIAL_PROT	(0=Firmware Update (RISM); 1=CsCAN; 2=Generic	0	4	
		(Ladder- Controlled); 3=Modbus RTU; 4=Modbus ASCII)			
%SR35-36	SERIAL_NUM	This Station's 32-bit Serial Number	0	232-1	
%SR37	MODEL_NUM	This Station's Binary Model Number	0	65535	
%SR38	ENG_REV	Firmware Rev Number (/ 100) 0000		9999	
%SR39	CPLD_REV	BIOS Rev Number (/ 100)	000	255	
%SR40	FPGA_REV	FPGA Image Rev Number (/ 10) 000		255	
%SR41	LCD_COLS	Vertical Pixel Count			
%SR42	LCD_ROWS	Horizontal Pixel Count			
%SR43	KEY_TYPE	Keypad Type			
%SR44	RTC_SEC	Real-Time-Clock Second	0	59	
%SR45	RTC_MIN	Real-Time-Clock Minute	0	59	
%SR46	RTC_HOUR	Real-Time-Clock Hour	0	23	
%SR47	RTC_DATE	Real-Time-Clock Date	1	31	
%SR48	RTC_MON	Real-Time-Clock Month	1	12	
%SR49	RTC_YEAR	Real-Time-Clock Year	1996	2095	
%SR50	RTC_DAY	Real-Time-Clock Day (1=Sunday)	1	7	
%SR51	NET_CNT	Network Error Count	0	65535	
%SR52	WDOG_CNT	Watchdog-Tripped Error Count	0	65535	
%SR53-54	BAD_LADDER	Bad Ladder Code Error Index	0	65534	
%SR55	F_SELF_TEST	Filtered Bit-Mapped Self-Test Result	0	65535	
%SR56	LAST_KEY	Key Code of Last Key Press or Release	0	255	
%SR57	BAK_LITE	LCD Backlight Dimmer Register 0 = 0% On; 25=25% On; 100-255 = 100% On		255	
%SR58	USER LEDS	User LED Control / Status 0		65535	
%SR59-60	Reserved	-	-	-	
,		This Station's Number of Network IDs 1			
%SR61	NUM IDS	This Station's Number of Network IDs	1	253	
	NUM_IDS NUM IDS	This Station's Number of Network IDs This Station's Number of Network IDs	1	253 253	

		Table 14.3 – %SR Registers		
Register	Name	Description	Min Val	Max Val
%SR64	SS STATUS	SmartStack I/O Base Status	0	2
%SR65-76	SS_INFO_1	SmartStack I/O Module #1 Information Structure	-	-
%SR77-88	SS_INFO_2	SmartStack I/O Module #2 Information Structure	-	-
%SR89-100	SS_INFO_3	SmartStack I/O Module #3 Information Structure	-	-
%SR101-112	SS_INFO_4	SmartStack I/O Module #4 Information Structure	-	-
%SR113-114	GOBJ_SIZE	Graphics Object Table Size	8	256K
%SR115-116	GSTR_SIZE	Graphics String Table Size	8	128K
%SR117-118	GBMP_SIZE	Graphics Bitmap Table Size	4	256K
%SR119-120	GTXT_SIZE	Graphics Text Table Size	8	128K
%SR121-122	GFNT_SIZE	Graphics Font Table Size	8	256K
%SR123-124	PROT_SIZE	Protocol Table Size	16	64K
%SR125	GOBJ_CRC	Graphics Object Table CRC	0	65535
%SR126	GSTR_CRC	Graphics String Table CRC	0	65535
%SR127	GBMP_CRC	Graphics Bitmap Table CRC	0	65535
%SR128	GTXT_CRC	Graphics Text Table CRC	0	65535
%SR129	GFNT_CRC	Graphics Font Table CRC	0	65535
%SR130	PROT_CRC	Protocol Table CRC	0	65535
%SR131-163	Reserved	-	-	-
%SR164.3		Read bit indicating Auto Restore of Register Data has been performed (Fail Safe)		
%SR164.4		Read bit indicating Backup of Register Data has been performed (Fail Safe)		
%SR164.5		Enable AUTORUN (Fail Safe)		
%SR164.6		Enable AUTOLOAD (Fail Safe)		
%SR164.7		Backup trigger bit		
%SR164.8		Clear Backup trigger bit		
%SR164.9		MAKE_CLONE trigger bit		
%SR164.10		LOAD_CLONE trigger bit		
%SR164.11		Status indicating Make Clone Fail (This bit goes high when Make / Create clone fails)		
%SR164.12		Status indicating Load Clone Fail (This bit goes high when Load clone fails)		
%SR165-173	Reserved			
%SR174	Removable Media	Removable Media Protect		
%SR175	Removable Media	Current Removable Media interface status	0	6
%SR176-177	Removable Media	Indicates free space on the Removable Media card in K bytes.	0	2 ³¹
%SR178-179	Removable Media	Indicates the total card capacity in K bytes.	0	2 ³¹
%SR180	Reserved	-	-	-
%SR181	ALM_UNACK	Unacknowledged Alarm (high bit indicates what group #)		
%SR182	ALM_ACT	Active Alarm (high bit indicates what group #)		
%SR183	SYS_BEEP	System Beep Enable (0=disabled; 1=enabled)		
%SR184	USER_BEEP	Software configurable (0=OFF; 1=ON)		
%SR185	SCR_SAVER	Screen Saver Enabled (0=disabled; 1=enabled)		
%SR186	SCR_SA_TM	Screen Saver Time in minutes (delay)		
%SR187	NET_USE	Average Net Usage of all units on the CAN network		
%SR188	NET_MIN	Minimum Net Usage of all units on the CAN network		
%SR189	NET_MAX	Maximum Net Usage of all units on the CAN network		
%SR190	NT_TX_AVG	Average Net Usage of this unit		
%SR191	NT_TX_MIN	Minimum Net Usage of this unit		
%SR192	NT_TX_MAX	Maximum Net Usage of this unit		

Table 14.3 – %SR Registers				
Register	Name	Description Min Val N		Max Val
%SR194		CPU Frequency		
%SR195		CPU Die Temperature		
%SR196		Max CPU Die Temperature		
%SR198		Battery Voltage		
%SR209.3		WebMI Server Status		
%SR209.4		WebMI User Logged in Status		
%SR209.8- 209.16		Number of Users		
%SR218		Number of Webpages		
%SR219		Number of Data Points		
%SR220-222		Expiration Date of WebMI License		

For additional information on system bits and registers, refer to the on-line help found in Cscape.

14.3 Register Map for XL+ OCS I/O

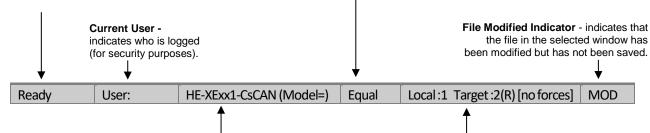
Table 14.4 – Register Map for XL+ OCS I/O						
Fixed	Digital/Analog			XL+ Model		
Address	I/O Function	2	3	4	5	6
	Digital Inputs	1-12	1-12	1-24	1-12	1-12
% I	Reserved	13-32	13-31	25-31	13-31	13-31
	ESCP Alarm	n/a	32	32	32	32
%Q	Digital Outputs	1-6	1-12	1-16	1-12	1-12
	Reserved	7-24	13-24	17-24	13-24	13-24
%AI	Analog Inputs	1-4	1-2	1-2	1-2	33-38 (1-4 Reserved)
	Reserved	5-12	3-12	3-12	3-12	n/a
%AQ	Analog Outputs	n/a	n/a	n/a	9-10	9-12
	Reserved	n/a	1-8	1-8	1-8	1-12

14.4 Resource Limits

Table 14.5– Resource Limits					
Resource	Value	Resource	Value		
%S	16	Ethernet	CsCAN, Ping, EGD, SRTP, Modbus TCP Master (Downloadable protocol) & Slave, Ethernet IP, FTP, or HTTP @ 10, 100, or		
%SR	448	CsCAN	1000 Mbps 125 kBd, 250 kBd, 500 kBd, or 1 MBd		
%T	16000	Serial Ports	1 RS232, 1 RS485 Ports		
%M	16000	IDs Per CsCAN Network	64 w/o repeat (253 w/ 3 repeaters)		
%R	49999	Keypad (Virtual)	8 keys (7 fn keys and a System Key)		
%K	5	Display	800 x 480 7" TFT, 65K colors		
%D	1023	Screen Memory	64 MB		
%l	2048	User Screens	1023		
%Q	2048	Data Fields Per User Screen	1023		
%AI	512	Ladder Code	1024 kB		
%AQ	512				

CHAPTER 15: CSCAPE CONFIGURATION

15.1 Overview


XL+ OCS hardware is programmed with a Windows based PC application called Cscape. This application can be used to program, configure, monitor, and debug all aspects of the XL+ OCS unit. Please see the online help provided with Cscape for additional details.

15.2 Cscape Status Bar

When the XL+ OCS is connected to a PC using Cscape software a Status Bar appears at the bottom of the screen. The Cscape Status Bar can be used to determine if communications have been established between the XL+ OCS and the Cscape program. Components of the Cscape Status Bar are explained below.

Message Line -The contents of these messages are context sensitive. The Message line can be empty. **Equal Indicator –** indicates whether the current program in Cscape is equal to the program stored in the Target Controller.

- If Equal, the program in Cscape is the same as the program stored in the Target Controller.
- If Not Equal, the program in Cscape is <u>not</u> the same as the program stored in the Target Controller.
- If Unknown, there may have been a change since the last time the program in Cscape was compared to the Target Controller.

Controller Model - Network (Model Confirmation)

- Controller Model indicates the controller model for which the program in Cscape is configured.
- Network indicates the type of network that the program in Cscape expects to use (e.g., CsCAN).
- (Model Confirmation) provides the following indications:
- (Model=) the actual Target Controller matches the configured Controller Model and Network.
- (Model Not=) the actual Target Controller does <u>not</u> match the configured Controller Model and Network.
- (Model?) there may have been a change since the last time the Target Controller was compared to the configured Controller Model and Network.

Communications Status - indicates the current status of the "pass through" Connector.

- Local: xx indicates the Network ID of the OCS to which the Cscape program is physically connected through its serial port. It can serve as a pass through device to other nodes on the network.
- Target: yy(R) indicates the Network ID of the device with which the Cscape program is exchanging data.

Note: The **Local** unit and **Target** unit can be the same unit or they can be separate units.

The following are status indicators:

(R) - Running

(D) - Do I/O

(I) - Idle

(?) – Cscape is not communicating with the remote unit. [no forces] – indicates no I/O has been forced.

Figure 15.1 – Cscape Status Bar

15.3 Establishing Communications

The XL+ OCS can communicate with Cscape using USB to USB, USB to serial adapters, serial port communications via MJ1 Port, Ethernet, CAN (CsCAN), or modems.

To communicate with the XL+ via USB you will need the automated driver installer located on the Horner APG web site.

Otherwise, the drivers may be loaded from the **HE-XEC Ethernet Utility / HTTP Web Server Demo / Communications Drivers** section of the support files page on our website, found here: https://hornerautomation.com/support-files.

For XL+ use Cscape Ver 9.8 or newer.

Next, connect a PC's (Personal Computer running a Windows Microsoft operating system) USB port via USB cable to the USB mini B port on the XL+ OCS.

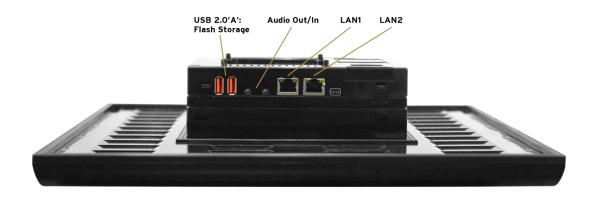
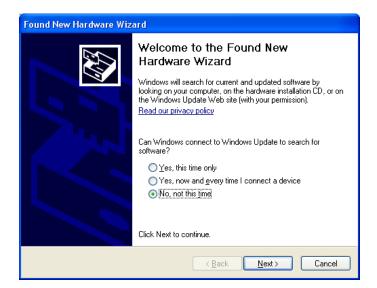



Figure 15.2 – USB Programming Connector

The PC will detect a new device has been plugged into the USB port.

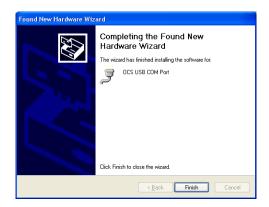


Figure 15.3 – Hardware Wizard Screenshots

Now that the XL+ is plugged in, go to the Cscape menu **Controller > Connection Wizard**, choose your connection method. If you're connecting for the first time, we suggest connecting via USB.

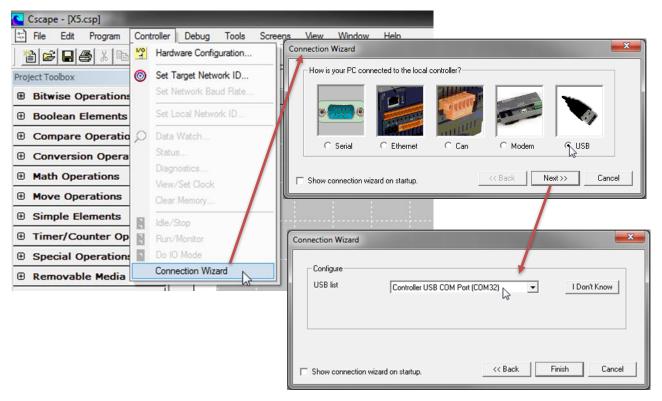


Figure 15.4 – Cscape Connection Wizard Screenshots

If **Controller USB COM Port** is not present in the dropdown list, the Windows operating system has not yet recognized the OCS as an installed device. Be sure the installation process is complete and that the correct drivers are installed.

An alternate way to select the COM setting is to go to **Cscape** -> **Tools** -> **Application Settings** -> **Communications** and choose connection method in **Add Target**.

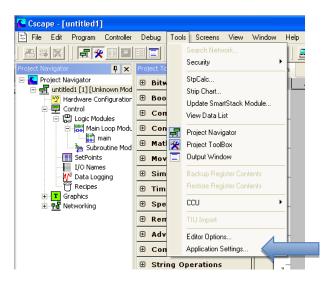


Figure 15.5 - Cscape: Alternative Connection Method Screenshot

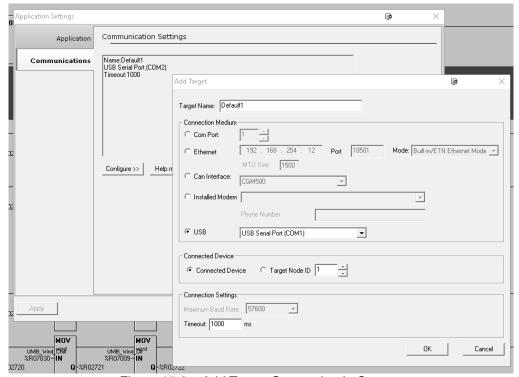


Figure 15.6 - Add Target Screenshot in Cscape

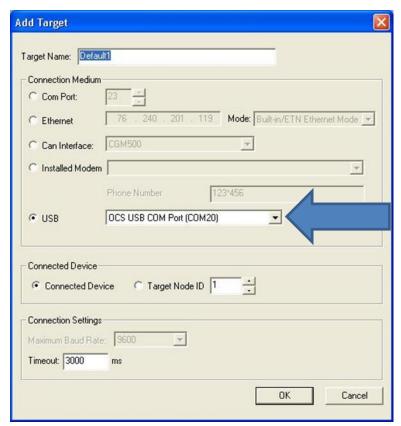
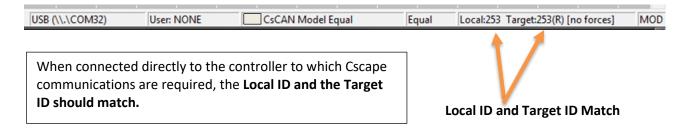


Figure 15.7 - Cscape: Add Target

NOTE: The following fields need to be filled for communication configuration if Cscape Connection Wizard was not used. Table 13.1 explains the information needed in each field.

- 1. Target Name
- 2. Connection Medium
- 3. Connected Device
- 4. Connection Settings



Communication Configuration Dialog	
Target Name	Name for connection. This is not a mandatory column to be filled, by
_	default Cscape will populate 'Default1' in edit box.
	Connection Medium
Com Port	Select this option to communicate over serial communication with the
	device. The port number can be configured here.
Ethernet	Select this option to communicate over Ethernet. Provide the IP address of the
	device and select the mode: HE GSM GPRS mode, Built in/ ETN
	Ethernet mode, or HE XEC Ethernet mode.
	Enterior mode, of the XEO Enterior mode.
	Select HE GSM GPRS mode if communication with XL series controller on GPRS is
	required and the device has GSM modem installed in XL series controller.
	required and the device has down modern installed in AL series controller.
	Colort Buildin / FTN Fabruard and de Sabradonica has an hand fabruard and
	Select Built in/ ETN Ethernet mode if the device has on-board Ethernet port.
	Select HE XEC Ethernet mode if the device has Ethernet comm. option board
	installed in XL series controller.
	NOTE: For GPRS connectivity, GPRS configuration from Programs Messaging
	GPRS needs to be done.
	of No fieeds to be doffe.
	NOTE: The controller should support the type of connectivity selected and
	configured for Ethernet communication.
Can Interface	
Can interrace	Select this option to communicate over CAN. This option requires
	additional hardware to be installed with the PC to be able to do so. Select
In atalla d Mandaus	the type of hardware installed from the dropdown.
Installed Modem	Select this option to communicate to the device through the internal
	modem of the computer. Cscape will automatically detect the internal
	modem attached with PC and list in the attached drop down. User can
	select modem and telephone number for target controller.
	NOTE: Cscape will do necessary initialization for the selected internal
	modem.
USB	Select this option to communicate over USB. Now Horner devices and
	Horner USB to serial converters are recognized and can be specifically
	selected.
	Connected Device
- O	is required if the controller to which Cscape is communicating is connected
to a CsCAN network.	
Connected Device	By default this option is selected and networking feature of Cscape is
	disabled.
Target Node ID	On selecting this option, Networking feature of Cscape is enabled. CsCAN
	ID for the target controller to be provide here.
Con	nection Settings (General Communication Settings)
Maximum Baud Rate	Select the baud rate for serial communication.
Timeout	Select the communication timeout.
	NOTE: Select a larger timeout for GPRS and installed modem
	1401E. Ocicci a larger timeout for or the and installed modern

Table 15.1—Communication Configuration Dialog

If communication is established, the target indicator will show the mode of the controller **Target: yy(R)** as shown in the status section above in this chapter, section Cscape Status Bar.

If the controller is not communicating, you may need to set the Target ID of the controller in Cscape or change the controllers ID on the unit itself. The **Target ID** allows directing communications to a particular unit when multiple units are connected via a CsCAN network. Units without CsCAN network ports respond to any network ID and do <u>not</u> require the ID to be configured.

To check or change the ID on the XL+ OCS, press the system menu key.

The first item in the menu is **Set Networks**. Pressing **Enter** allows the ID of the unit to be viewed or modified.

To point Cscape at the correct controller, change the Target ID of Cscape use the **Controller | Set Target Network ID** dialog.

15.3.1 Communicating via MJ1 Serial Port

Start by configuring Cscape to use the correct communications port. This can be done using the **Tools** | **Options** | **Communication Port** dialog in Cscape.

Next, connect the PC's serial port to the port labeled MJ1 on the XL+.

If communications are successful, the target indicator should show the mode of the controller Target: yy(R) as shown in the status section above.

If the controller is not communicating, it may be required to set the target ID of the controller in Cscape or on the unit. The Target ID allows directing communications to a particular unit when multiple units are connected via a CsCAN network. Units without CsCAN network ports respond to any network ID and do not require the ID to be configured.

To check or change the ID on the XL+, press the System Button to enter the system menu. The first item in the menu is Set Network ID.

Pressing Enter allows the ID of the unit to be viewed or modified.

To change the Target ID of Cscape use the **Controller | Set Target Network ID** dialog.

15.3.2 Communicating via On Board Ethernet Port

From Cscape go to **Controller** -> **Hardware Configuration** and do auto configuration for the connected controller, click on **Config of Ethernet** and go to **Module Setup**.

The IP address, Net Mask, and Gateway of the controller may be temporarily set from the system menu under the Set Networks menu item. Once running or power cycled the configuration will come from the Cscape configuration stored in the unit.

In Module configuration dialog, go to IP Address field enter unused IP Address and configure unused registers in Register field & then click OK. Screenshot for the same as follows:

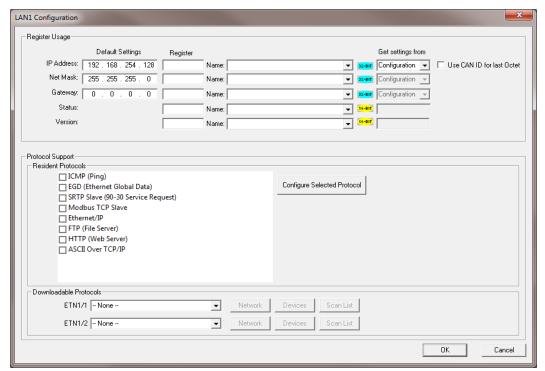


Figure 15.8- Digital Input / HSC Configuration Dialog

Download the configuration in to Controller. Connect LAN cable to the Controller in default LAN Port.

From Cscape go to **Tools** -> **Editor Options** -> **Communication Port** -> **Configure**. Select Ethernet and enter IP address which is configured in the file. Select mode as XL Series mode from drop down list.

The controller should get connected to Cscape. If communications are successful, the target indicator should show the mode of the controller Target: yy(R) as shown in the status section above.

15.4 Configuration

An overview of configuration:

- 1. Start the configuration by selecting the **Controller | Hardware Configuration** menu item.
- 2. If the XL+ OCS is connected to the PC, press the **Auto Config System** button to automatically detect the Base model, I/O and any add-on communication options.
- 3. If the XL+ OCS is <u>not</u> connected, press the **Config** button to the right of the top of the unit. This allows the base CPU to be selected.
- 4. Select either XL+ OCS Cscan from the type drop down box.
- 5. Once the type of XL+ OCS is selected, the model # drop down box will provide the XL+ OCS model numbers from which to choose from.
- 6. Once the XL+ OCS CPU is selected, press **OK** to exit the dialog and configure the I/O that is present in the first slot.
- 7. The Hardware Configuration dialog (Specifically the **Module Setup** tab) provides four (4) buttons to configure all of the I/O. Go through each area of I/O and configure it.
- 8. Once done configuring the I/O, OK out of configuration dialogs.

Configuring the XL+ OCS I/O has four main portions that are covered in this chapter:

- 1. Digital in / HSC
- 2. Digital out / PWM
- 3. Analog in
- 4. Analog out

For additional information on I/O, refer to the chapters covering General I/O or High Speed I/O in this manual.

15.5 Digital Input / HSC Configuration

The following figure illustrates the **Digital Input / HSC Configuration** dialog.

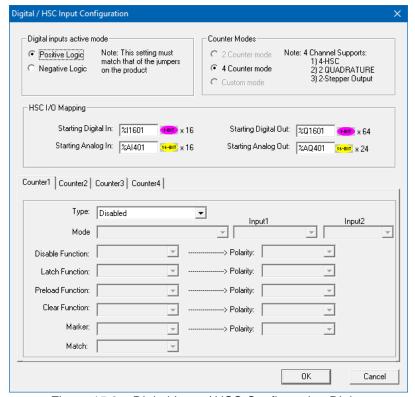


Figure 15.9 – Digital Input / HSC Configuration Dialog

The active mode group box allows the user to select if inputs are active high (Positive logic) or active low (Negative logic). It is important that this setting match what the jumper settings are on the hardware.

The High Speed Counters group box contains all of the windows that are used for configuring the four (4) available high speed counters on the XL+ OCS. In configuring a counter, the user needs to set the type, mode, and counts per rev.

The type drop down includes the following options:

- Disabled
- Frequency Measurement
- Period Measurement
- Totalize
- Pulse Width Measurement
- Quadrature

15.6 Digital Output / PWM Configuration

The following figure illustrates the **Digital Output / PWM Configuration** dialog.

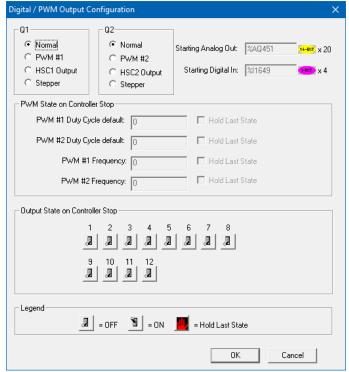


Figure 15.10 - Digital Output / PWM Configuration Dialog

The Q1 and Q2 group boxes allow the user to specify the operation of the multi-function outputs.

The **PWM State On Controller Stop** group box contains items that allow the user to specify how the PWM outputs behave when the controller is stopped. These items can either hold their value or default to some value when the controller is stopped.

NOTE: The PWM outputs are set to the OFF state at power-up and during program download and remain in that state until the unit is placed in RUN.

The **Output State On Controller Stop** group box contains items to allow the user to specify how the remaining digital outputs behave when the controller is stopped. These items can either hold their value or default to some value when the controller is stopped.

15.7 Analog Input Configuration

The following figure illustrates the **Analog Input Configuration** dialog.

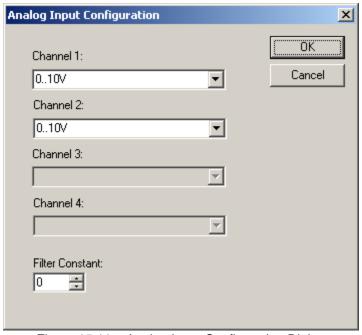


Figure 15.11 – Analog Input Configuration Dialog

The **Channel x** drop down windows allow the user to specify the mode for each analog input to operate. The **Channel x** drop down windows are enabled/disabled according to which model is being configured. All of the models have the following modes available:

- 0..10V
- 0..20mA
- 4..20mA

For each range selected, the raw value in the corresponding register (%AI1 - %AI4) will be a range of 0 to 32000. For example, Channel 1 set to 4..20mA would show a 0 in %AI1 for 4mA on the input, 32000 in %AI1 for 20mA (and -8000 in %AI1 for 0mA).

On model 005, all channels (1-4) also have the following modes available:

- 100mV
- PT100 DIN RTD, 1/20°c
- Type J Thermocouple, 1/20°c
- Type K Thermocouple, 1/20°c
- Type N Thermocouple, 1/20°c
- Type T Thermocouple, 1/20°c
- Type E Thermocouple, 1/20°c
- Type R Thermocouple, 1/20°c
- Type S Thermocouple, 1/20°c
- Type B Thermocouple, 1/20°c

The **Filter Constant** provides filtering to all channels.

15.7.1 Advanced Math Functions

The Cscape Scale function, found in the Advanced Math functions, allows for very easy conversion of the raw input value into a meaningful reading. For example, a pressure transducer may be specified as a 4-20mA output corresponding to a 0-2000psi reading. Set the channel to the 4..20mA range. Use the Scale function to easily obtain an Integer pressure reading using the 0 – 32000 raw input range and the sensor's 0-2000psi output range. The additional use of a Conversion function to convert the raw INT value to REAL format before scaling would allow decimal places in the reading, or a floating-point value. Be sure the Scale function and all other functions used are set to the same data format.

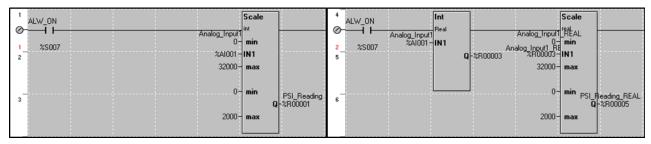


Figure 15.12 - Advanced Math Functions Screenshot

The **Filter Constant** provides digital filtering to all channels. Valid filter values are 0-7. Refer to the datasheet for more information on digital filtering.

15.8 Analog Output Configuration

The following figure illustrates the **Analog Output Configuration** dialog.

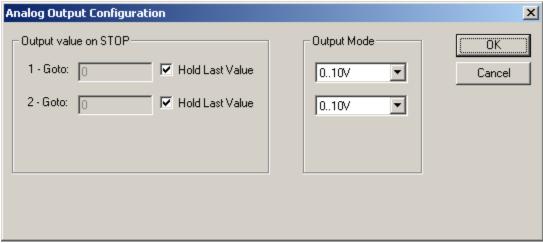


Figure 15.13 – Analog Output Configuration Dialog

The **Output value on Stop** group box contains items that allow the user to specify how the analog output channels behave when the controller is stopped. The outputs can either hold their value or default to a value when the controller is stopped.

The **Output Mode** group box allows the user to select the operating modes for each of the analog outputs. The modes include the following:

- 0..10V
- 0..20mA
- 4..20mA

CHAPTER 16: FAIL - SAFE SYSTEM

16.1 Overview

The Fail-Safe System is a set of features that allow an application to continue running in the event of certain types of "soft" failures. These "soft" failures include:

- Battery power loss.
- Battery-Backed Register RAM or Application Flash corruption due to, for example, an excessive FMI event

The Fail-Safe System has the following capabilities:

- Manually backup the current Battery-Backed RAM Register Settings into Flash memory.
- Manually restore Register Settings from the values previously backed up in Flash to Battery-Backed RAM.
- Detect corrupted Register Settings at power-up and then automatically restore them from Flash.
- Detect corrupted or empty application in Flash memory at power-up and then automatically load the AUTOLOAD.PGM application file from Removable Media (Compact Flash or MicroSD).
- If an automatic Register Restore or Application Load occurs, the OCS can automatically be placed in RUN mode

The fail-safe system can be accessed by going to the system menu of the controller. A new menu "Fail-Safe System" has been added at the end of the main system menu for this. Selecting "Fail-Safe System" menu will open the following menu screen:

Figure 16.1 - Fail-Safe System Menu

16.2 Settings

To use the fail – safe feature, the user needs to do the following:

- 1. Backup the current Battery-Backed RAM Register contents in On-Board Flash memory using System Menu options.
- 2. From Cscape, create AUTOLOAD.PGM for the application program using 'Export to Removable Media'.
- 3. Place the Removable Media with AUTOLOAD.PGM in the device.
- 4. Set the 'Enable AutoLoad' option in the device to YES.

5. Set the 'Enable AutoRun' option to YES if the controller needs to be placed in RUN mode automatically after automatic restore of data or AutoLoad operation.

16.3 Backup / Restore Data

Selecting this option brings up a screen having four operations:

- Backup OCS Data.
- Restore OCS Data.
- Clear Backup Data.
- Exit

Figure 16.2 - Backup / Restore Data

Backup OCS Data:

When initiated, this will allow the user to manually copy Battery-Backed RAM contents on to the onboard FLASH memory of the OCS. This will have the effect of backing up all the registers and controller settings (Network ID, etc.) that would otherwise be lost due to a battery failure.

%SR164.4 is set to 1 when backup operation is performed.

Figure 16.3 – Backup Registers

Restore OCS Data:

When initiated, this will allow the user to manually copy the backed up data from the onboard FLASH to the Battery-Backed RAM.

A restore operation will be automatically initiated if a backup has been previously created and on power-up the Battery-Backed RAM registers fail their check.

The following process will be followed for restoring data:

- The controller will be placed in IDLE mode.
- Data will be copied from onboard FLASH to OCS Battery-Backed RAM
- The controller will reset.
- The controller will be put in RUN mode if the AutoRun setting is 'Yes' else it will remain in IDLE mode.

Figure 16.4 - Restore OCS Data

%SR164.3 is set to 1 only when an automatic restore operation is performed - not on a manual one. This bit is reset to 0 when a new backup is created.

Restoring of data can be manually performed by selecting RESTORE option from the Backup / Restore Data menu. This will cause the controller to reset.

Clear Backup Data:

When initiated, the backup data will be erased from the onboard FLASH and no backup will exist. %SR164.4 and %SR164.3 is reset to 0 when backed up data is erased.

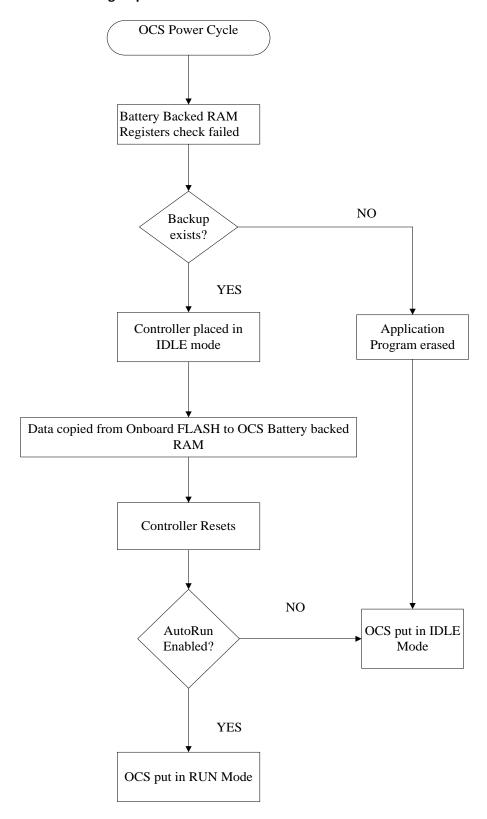


Figure 16.5 - Clear Backup Data

Exit: Goes back to the previous screen.

The OCS follows the following sequence in execution of Automatic Restore:

Figure 16.6 – Flow Chart for Automatic Restore

16.4 AutoLoad

This system menu option allows the user to specify whether the OCS automatically loads the application AUTOLOAD.PGM located in Removable Media.

When the AutoLoad setting is enabled (set to YES), it can either be manually initiated or automatically initiated at power-up.

The automatic initiation will happen only in the following two cases:

- When there is no application program in the OCS and a valid AUTOLOAD.PGM is available in the removable media of the device.
- When the program residing in onboard memory is corrupted and a valid AUTOLOAD.PGM is available in the Removable Media of the device.

AutoLoad can be manually initiated when the SYS-F3 key is pressed (OCS can be in any of the following mode – Idle / Run / DOIO). This also requires a valid AUTOLOAD.PGM to be present in the Removable Media of the device.

When the AutoLoad setting is not enabled (set to NO), OCS will be in IDLE mode, and the application is not loaded.

If the AUTOLOAD.PGM is security enabled, the user will be prompted to enter the password before loading the application. The application will be loaded from the Removable Media only after getting the correct password.

%SR164.6 can be set to enable AutoLoad feature.

Figure 16.7 – AutoLoad Menu

The OCS follows the following sequence in execution of AutoLoad:

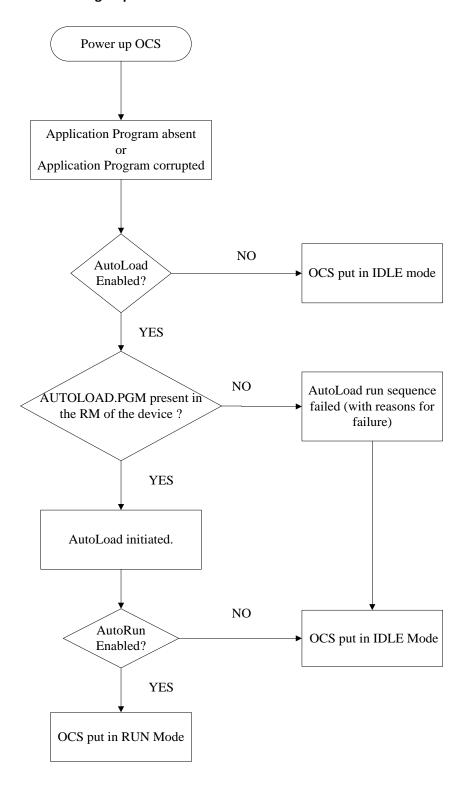


Figure 16.8 - Flow Chart for AutoLoad

16.5 AutoRun

This system menu option, when enabled (YES), allows the user to automatically place the OCS into RUN mode after the AutoLoad operation or automatic Restore Data operation.

When the AutoRun setting is disabled (NO), the OCS remains in the IDLE mode after a Restore Data or AutoLoad operation.

%SR164.5 can be set by putting the system into RUN mode automatically, once an AutoLoad has been performed or an Automatic Restore has occurred.

If for any reason the AutoLoad-Run (loading the AUTOLOAD.PGM automatically and OCS put in RUN mode) sequence does not succeed, a pop-up message box saying "AUTO-LOAD-RUN SEQUENCE FAILED" will be displayed. It will also show the reason for its failure. On acknowledging this message box the AutoLoad-Run sequence will be terminated, controller will return to the first user-screen and will be placed in IDLE mode.

Figure 16.9 – AutoRun Menu

CHAPTER 17: CLONE UNIT

17.1 Overview

'Clone Unit' feature allows the user to "clone" the OCS of the exact same model. This feature "clones" application program and unit settings stored in Battery backed RAM of an OCS into the RM (refer Removable Media, Chapter 9, for details in using RM). It can then be used to clone a different OCS (exact same model).

This feature can be used for:

- Replacing an OCS by another unit of the same model.
- Duplicating or "clone" units without a PC.

17.2 Clone

User needs to perform the following to Clone:

1. The 'Clone Unit' can be accessed by going to the 'System Menu' of the OCS. A new menu "Clone Unit" has been added at the end of the main system menu as shown below:

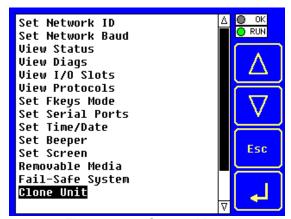


Figure 17.1 - System Menu

2. Selecting "Clone Unit" menu will open the following menu screen:

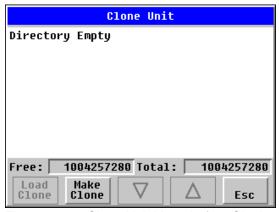


Figure 17.2 – Clone Unit Menu before Cloning

Free/Total – displays number of free and total bytes in Removable Media.

3. Make/Create Clone option enables user to duplicate / Clone application file, all unit settings and all register values from Battery Backed RAM.

Selecting Make Clone brings up the screen below for the user:

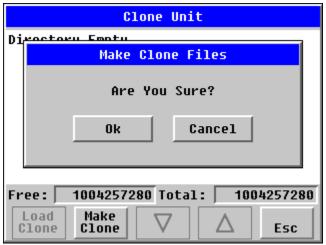


Figure 17.3 – Clone Unit Confirm Screen

After confirmation, the OCS will create two new files in the root directory of the Removable Media Drive as shown below:

AUTOLOAD.PGM CLONE.DAT

Application file

File having all unit settings and register values from Battery Backed RAM

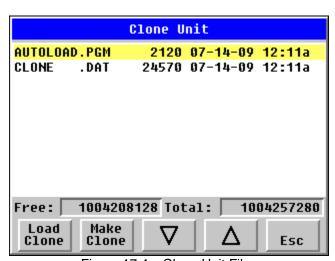


Figure 17.4 - Clone Unit Files

NOTE: Make/Create clone operation automatically includes the security in \AUTOLOAD.PGM file for security enabled files.

4. Once the cloning is successful, OCS gives a message as below:

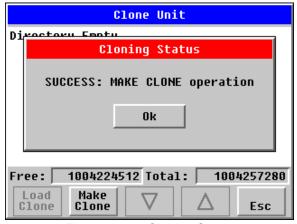


Figure 17.5 - Cloning Status

Make/Create clone can also be triggered by setting %SR164.9 bit to "1" from Ladder program or graphics. Once the operation is completed, this bit is made zero by the firmware. When Make Clone operation is triggered by this SR bit, it does not ask the user for confirmation for making clone. The success / failure of the operation is also not notified on screen to the user.

In case of failure of "Make Clone" operation, %SR164.11 bit is set to "1" by the firmware and never reset.

NOTE: Backup of registers in flash memory is not performed by Clone Feature. If user desires, Backup should be done as explained in Chapter 16 (Fail Safe System).

17.3 Load Clone

This option loads the application, all unit settings and register values from Removable Media to the Battery backed RAM (Regardless of AutoLoad settings) and then resets the OCS for the settings to take effect.

User needs to perform the following to Load Clone:

1. Select **Clone Unit** from main system menu of OCS as shown below:

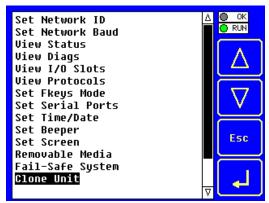


Figure 17.6 - System Menu

2. Selecting Clone Unit menu will open the following menu screen. Select Load Clone.

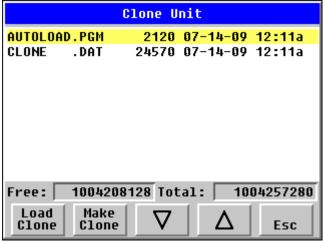


Figure 17.7 - Clone Unit Menu after Cloning

3. User needs to confirm Load Clone as shown below:

Figure 17.8 – Load Clone Confirm Screen

4. After confirmation, all unit settings and register values will be loaded from Removable media to the Battery backed RAM (Regardless of AutoLoad settings) and then OCS resets for the settings to take effect.

NOTE: For security enabled files, Load Clone asks for password validation before loading the application.

Load Clone can also be triggered by setting %SR164.10 bit to "1" from Ladder program or graphics. Once the operation is completed, this bit is made zero by the firmware. When Load Clone operation is triggered by this SR bit, it does not ask the user for confirmation for loading clone. The success / failure of the operation is also not notified on screen to the user.

In case of failure of Load Clone operation, %SR164.12 bit is set to "1" by the firmware and never reset.

CHAPTER 18: MAINTENANCE

18.1 Firmware Updates

The XL+ OCS products contain field updatable firmware to allow new features to be added to the product at a later time. Firmware updates should only be performed when a new feature or correction is required.

WARNING: Firmware updates should only be performed when the equipment being controlled by the XL+ OCS is in a safe, non-operational state. Communication or hardware failures during the firmware update process can cause the controller to behave erratically resulting in injury or equipment damage. Make sure the functions of the equipment work properly after a firmware update before returning the device to an operational mode.

Steps for updating the firmware:

- 1. Loading new firmware will erase any program stored in the OCS for safety and compatibility reasons. Performing a clear memory and doing a firmware update will erase the downloaded program. This includes all program logic, screens, and configurations. It will also erase all battery backed register data. Please backup the application prior to performing a firmware update.
- 2. Copy the supplied files onto a FAT32 formatted MicroSD or USB based flash device (currently not supported).
- 3. Insert the MicroSD into the XL+ making sure no other memory or drives are connected to the device.
- 4. Press and hold the system menu for at least 6 seconds and System Recovery Screen appears. Select System Upgrade option.
- 5. If you are just updating the firmware, press the **Update Firmware** button. If you are updating the bootloader and firmware, press the **Update Bootloader** button. Updating only firmware takes few seconds, and updating bootload takes few minutes.

NOTE: In nearly every case it is recommended to select **Install Bootloader**.

18.2 Backup Battery

The XL+ has a battery backup system. It uses a lithium button coin type battery. The battery powers the real time clock, registers, and data memory when power is removed.

Under normal conditions, the battery in the XL+ OCS should last approximately seven years. Higher operating temperatures or variations in batteries may reduce this time.

18.2.1 Indications the battery needs replacing

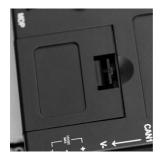
The XL+ OCS indicates the battery is low, failed, or missing in a variety of ways. At power-up, an error message is displayed indicating the low or missing battery. The user program can monitor the battery using %SR55.13. This bit will turn on if the battery is low or missing. The system menu also contains a battery status message under the diagnostics sub-menu (see the chapter on System Settings and Adjustments).

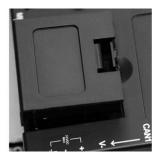
18.2.2 Battery Replacement

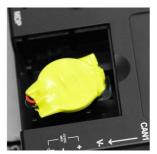
WARNING: Lithium Batteries may explode or catch fire if mistreated.

Do not recharge, disassemble, heat above 100°C (212°F) incinerate, or puncture.

WARNING: Disposal of lithium batteries must be done in accordance with federal, state, and local regulations. Be sure to consult with the appropriate regulatory agencies *before* disposing batteries. In addition, do <u>not</u> re-charge, disassemble, heat, or incinerate lithium batteries.


WARNING: Do <u>not</u> make substitutions for the battery.


Be sure to only use the authorized part number to replace the battery.


WARNING: EXPLOSION HAZARD—BATTERIES MUST ONLY BE CHANGED IN AN AREA KNOWN TO BE NON-HARZARDOUS.

The XL+ OCS uses a CR2032 lithium button coin type battery, part no. HE500BAT013, with connector available from Horner APG.

Below are the steps to replace the battery:

- 1. Make sure the user program and any data stored in retentive memory is backed up.
- 2. Disconnect all power from the XL+ OCS unit including I/O power.
- 3. On the back of the XL+ model, slide battery plate cover off.
- 4. Connect the new battery into the adjacent connector first and then remove the old battery. **NOTE:** Use proper battery type listed above.
- 5. Dispose of the old battery properly; see the above warning on disposal regulations.
- 6. Slide battery plate cover back on the unit.
- 7. Apply power to the unit. Check that the battery error is no longer reported. If the unit still reports the error, remove the battery immediately and contact Technical Support.

The following %SR can be used to display various data on Cscape regarding battery status:

- SR194 CPU frequency
- SR195 CPU die temperature
- SR196 Max CPU die temperature
- SR198 Battery voltage

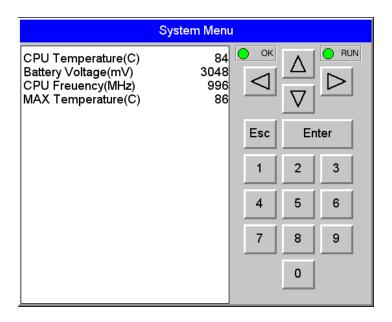


Figure 18.1 - View Battery Status Screen

CHAPTER 19: TROUBLESHOOTING / TECHNICAL SUPPORT

Chapter 19 provides commonly requested **troubleshooting information and checklists** for the following topics.

- Connecting to the XL+ OCS controller
- Local controller and local I/O
- CsCAN Network
- Removable media

In the event that this information is not enough, please contact Technical Support at the locations indicated at the end of this chapter.

19.1 Connecting to the XL+ OCS

Cscape connects to the local controller automatically when the serial connection is made. The status bar below shows an example of a successful connection. This status bar is located in the bottom right hand corner of the Cscape window.

Local:253 Target:253(R) [no forces]

In general the **Target** number should match the **Local** number. The exception to this is when the controller is being used as a "pass through" unit where other controllers on a CsCAN network could be accessed through the local controller.

Determine connection status by examining feedback next to Local & Target in the status bar of Cscape.

Local: ###	If a number shows next to Local then communication is established to the local controller.	
Local: No Port	Cscape is unable to access the COM port of the PC. This could mean that Cscape is configured for a COM port that is not present or that another program has control of the COM port. Only one Cscape window can access a port at a time. Subsequent instances of Cscape opened will indicate No Port.	
Local: No Com	Cscape has accessed a PC COM port, but is not communicating with the controller. This typically occurs when the controller is not physically connected.	
Local: ???	Unknown communication error. Close Cscape, power cycle the controller and reopen Cscape with a blank project. Check Local.	
Target: #(I,R,D)	If I (idle), R (run), or D (do I/O) shows next to Target number then communication is established to the target controller.	
Target: #(?)	Communication is not established to the target controller. Check node ID of controller and set Target to match. Make sure local connection is established.	

Table 19.1 – Cscape Target & Local Numbers

- 19.1.1 Connecting Troubleshooting Checklist (serial port MJ1 Programming)
 - 1. Controller must be powered up.
 - Ensure that the correct COM port is selected in Cscape. Tools/Applications Settings/ Communications.
 - 3. Ensure that a cable with proper pinout is being used between PC and controller port MJ1.
 - 4. Check that a Loaded Protocol or ladder is not actively using MJ1. Taking the controller out of Run Mode from the System Menu on the controller will make MJ1 available to Cscape.
 - 5. Successful communications with USB-to-serial adapters vary. If in doubt, Horner APG offers a USB to serial adapter. Part numbers HE-XCK and HE-CPK.
- 19.1.2 Connecting Troubleshooting Checklist (USB Port Mini B Programming)
 - 1. Controller must be powered up.
 - 2. Ensure that the correct COM port is selected in Cscape. **Tools/Applications Settings/ Communications**.
 - 3. Be sure that the USB cable is connected between the PC and the controller. Check Windows Device Manager to ensure that the USB driver is properly installed and to verity the port number.
- 19.1.3 Connecting Troubleshooting Checklist (ETN port programming)
 - 1. Controller must be powered up.
 - 2. Ensure that the correct IP address is given in the Ethernet field and correct Mode is selected, in Cscape: Tools/Application Settings/Communications.
 - 3. Ensure that an Ethernet connection has been established by pinging the controller from the Windows DOS prompt.

19.2 Local Controller and Local I/O

The system menu provides the following status indications that are useful for troubleshooting and system maintenance.

- Self-test results, diagnostics
- RUN and OK status
- Network status and usage
- Average logic scan rate
- Application memory usage
- Loaded firmware versions
- Loaded protocols
- Removable media access

To view the system menu, press the System key.

19.2.1 Local I/O Troubleshooting Checklist

- 1. Verify the controller is in RUN mode.
- Check diagnostics to ensure controller passed self-tests.
 Press View Diags in the System Menu or in Cscape, click Controller -> Diagnostics
- 3. Check data sheets to insure proper wiring.
- 4. Insure that hardware jumpers and software configuration for I/O match.
- 5. Check data sheets for voltage and current limits.
- 6. Take ladder out of the picture. From Cscape set controller to "Do I/O" mode. In this mode inputs can be monitored and outputs set from a data watch window in Cscape without interference from the ladder program. Some I/O problems are only a result of a mistake in the ladder program.

WARNING: Setting outputs ON in Do I/O mode can result in injury or cause machinery to engage in an unsafe manner depending on the application and the environment.

19.3 CsCAN Network

For complete information on setting up a CsCAN network, refer to CAN Networks manual (MAN0799) by visiting the Horner websites for the address to obtain documentation and updates.

Network status, node ID, errors, and baud rate in the controller system menu are all in reference to the CsCAN network. These indications can provide performance feedback on the CsCAN network and can also be used to aid in troubleshooting.

19.3.1 CsCAN Network Troubleshooting Checklist

- 1. Use the proper Belden wire type or equivalent for the network as specified in MAN0799.
- 2. The XL+ OCS <u>does not</u> provide 24VDC to the network. An external voltage source must be used for other devices such as SmartStix I/O.
- 3. Check voltage at both ends of the network to insure that voltage meets specifications of attached devices.
- 4. Proper termination is required. Use 121-ohm (or 120-ohm) resistors at each end of the network. The resistors should be placed across the CAN_HI and CAN_LO terminals.
- 5. Measure the resistance between CAN_HI and CAN_LO. If the network is properly wired and terminated, there should be around 60 ohms.
- 6. Check for duplicate node ID's.
- 7. Keep proper wires together. One twisted pair is for V+ and V- and the other twisted pair is used for CAN HI and CAN LO.
- 8. Make sure the baud rate is the same for all controllers on the network.
- 9. Assure shields are connected at one end of each segment -- they are not continuous through the network.
- 10. Do not exceed the maximum length determined by the baud rate and cable type.
- 11. Total drop length for each drop should not exceed 6m (20 feet). A drop may include more than one node. The drop length adds to the overall network length.
- 12. Network should be wired in "straight line" fashion, not in a "star" pattern.
- 13. In applications requiring multiple power supplies, make sure the V- of all supplies is connected together and to earth ground at one place only.
- 14. In some electrically noisy environments it may be necessary to add repeaters to the network. Repeaters can be used to add additional nodes and/or distance to the network and protect the signal against noisy environments. The Horner APG repeater is part # HE200CGM100.

19.4 Removable Media - Basic Troubleshooting

Description	Action
XL+ OCS does not read media card.	The media card should be formatted with the XL+ OCS.
XL+ OCS will not download project file.	Make sure the project file is saved as a .pgm file and not a .csp file. In addition, to file must be .pgm, the file's I/O configuration must match the XL+ configuration for it to download.

Table 19.2 – Removable Media Troubleshooting

19.5 Technical Support Contacts

For manual updates and assistance, contact Technical Support at the following locations:

North America:

Tel: (317) 916-4274 Fax: (317) 639-4279

https://hornerautomation.com
Email: techsppt@heapg.com

Europe:

Tel: (+) 353-21-4321-266 Fax: (+353)-21-4321826 www.horner-apg.com

Email: tech.support@hornerapg.com

Main Index

%Q bits, 41	Communication options, 28, 32
9.10 System Registers used with RM, 37	Communication Options
Accessories, 15	Modem COM Module (XMC), 32
accumulator, 48, 49, 50	Overview, 32
Add Target Screenshot in Cscape, 91	Communications Port, 90, 91, 119
Advanced Math Functions Screenshot, 101	Compliance
Alarm Object, 78	CE, 11
Alarm Viewer, 79	Count , 54, 55
Alarms, 78	Csape Program
Alpha-Numeric Keypad, 75	Via Serial Port, 25
Analog Input Configuration Dialog, 100	Cscape, 14, 15, 24, 25, 27, 32, 35, 36, 38, 41, 42,
Analog input tranzorb - troubleshooting, 44	43, 44, 46, 47, 63, 64, 77, 86, 87, 88, 94, 118,
Analog Inputs, 44	119, 120
Analog Outputs, 46, 48	Add Target, 92
AutoLoad, 107	Alternative Connection Method Screenshot, 91
AutoLoad Menu, 107	Analog In Configuration, 100
AutoRun, 109	Analog Out Configuration, 102
AutoRun Menu, 109	Configuration Procedures, 97
Backup / Restore, 104	Digita In / HSC Configuration, 98
Backup OCS Data, 104	Digital Out / PWM Configuration, 99
Battery	Establishing Communications, 88
Backup, 115	Overview, 87
Replacement, 116	Status Bar, 87
Warnings, 116	CSCAPE CONFIGURATION, 87
When to Replace, 115	Cscape Connection Wizard Screenshots, 90
Battery backed RAM, 71, 111	Cscape Target & Local Numbers, 118
Beeper Acknowledgement, 77	CscapeStatus Bar, 87
CAN Comm	datasheet, 9, 38, 43, 46
Cscape Programming, 27	Default Gateway, 30
I/O Expansion (Network I/O), 27	Device Manager, 119
Ladder-Controlled, 27	Devices to Connect to XL+, 13
Overview, 26	Digital Input / HSC Configuration Dialog, 96
Ports, 26	Digital Inputs, 43
CAN Communications, 26	Dimensions, 19
CAN1 & CAN2 Connector Locations, 26	Displaying and entering data, 74
CAN1 / CAN2 Port Pins, 26	Duty Cycle, 57
CE, 11	Duty Cycle Examples, 57
Clear Backup Data, 105	Edit-Value Mode, 75
Clone Unit, 71, 111	Electrical Installation, 22
Clone Unit Confirm Screen, 112	Ethernet, 83, 88
Clone Unit Files, 112	Ethernet Communication, 28
Clone Unit Menu after Cloning, 114	Ethernet Module
Clone Unit Menu before Cloning, 111	Default Gateway, 30
CLONE.DAT , 72, 112	IP Address, 30
COM, 24, 27, 32, 62, 63, 65, 83, 118, 119	Net Mask, 30
COM port, 118	Status Register, 30
Communicating via MJ1 Serial Port, 95	Version Register, 30
Communication Configuration Dialog, 93	Ethernet Module Configuration, 28, 29

Ethernet Module Protocol Configuration, 31 Minimum Clearance Requirements for Panel Box Ethernet Module Protocols & Features, 28 and Doors, 20 Ethernet Module Protocols and Features, 28 Model / I/O Overview, 40 Ethernet Module Specifications, 28 Modem COM Module Option, 32 Ethernet Status Word Register Format, 30 Mounting Orientation, 18 Ethernet System Requirements, 28 Mounting Requirements, 16 Example Jumper Diagram, 39 Panel Door Mounting, 16 Fail - Safe System, 69 Net Mask, 30 Fail Safe System Overview, 103 New-Value Mode, 75 Fail Safe System Settings, 103 OCS Reference Document Numbers, 15 Features, 14 Overview of the XL+, 12 Filename Special Symbols, 37 Panel Box Firmware Updates, 115 Clearances, 20 Flow Chart for AutoLoad, 108 Grounding, 20 Flow Chart for Automatic Restore, 107 Noise, 20 Force and Switch Coils in Ladder Programming, 77 Orientation, 20 Frequency, 48, 55, 98 Temperature, 20 Front Panel and USB Programming Connector, 88 Panel Box Shock and Vibration, 21 fusing, 41, 42 Panel Cut-out, 19 General I/O Panel Design Checklist, 21 Overview, 38 Panel Mounting of an XL+ Series OCS, 16 **GENERAL I/O**, 38 Perimeter Set Studs, 17 Glossary, High Speed I/O, 47 Power Connector (Primary Power Port), 23 Ground Specification, 22 Primary Power Port, 23 Grounding Primary Power Port as Viewed Looking at the XL+ Locations of Information, 11 OCS, 23 Grounding Definition, 22 Primary Power Port Pins, 23 Hardware Configuration Dialog, 29 PROGRAMMING EXAMPLES, 3 Hardware Wizard Screenshots, 90 Pulse, 49 pulse mode, 49 **High Speed** Frequency, 48 pulse stream, 49 High Speed / PWM Pulse Width Modulation, 47, 53 Overview, 47 PWM, 14, 41, 47, 53, 54, 57, 97, 99 High Speed Counting, 47 Examples, 57 HIGH SPEED I/O, 47 Frequency Formula, 55 HSC, 47, 48, 50, 51, 53, 54, 97, 98 Registers, 56 HSC Output Functions Register Map, 56 Quadrature, 48, 50, 98 References / Useful documents, 15 I/O Cover Removal, 38 IP Address, 30 register mapping, 38, 41 License Details, 73 Register Match, 50 LIMITED WARRANTY, 3 registers, 83 Load Clone, 72, 113 Registers Load Clone Confirm Screen, 114 %S / %SR, 83 Maintenance, 111, 115 Definitions, 83 Make Clone, 111 1/0,86 Manual Index, 13 Resource Limits, 86 **MECHANICAL INSTALLATION**, 16 Relay Fusing, 42 Micro SD Cards, 34 Relay Outputs, 41 Removable Media, 68, 80 Installing / Removing, 34 Micro SD System, 34 Load / Save Applications, 35

totalize, 48

Log Data, 35 Totalize, 48 Overview, 33, 34 Touch (slip) Sensitivity, 78 Save Applications XL+, 35 Touch Screen Calibration, 72 View / Capture, 36 Troubleshooting Removable Media Manager, 35 Common problems, 118 Removable Media Submenu, 35 Connecting Checklist, 119 Removable Media XL6, 68 CsCAN Checklist, 120 Removable MicroSD Memory Card Slot, 34 CsCAN Network, 120 Local Controller / I/O, 119 Removing the I/O Cover, 38 Restore OCS Data, 105 Local I/O Checklist, 120 RM Status Values, 37 Removable Media, 121 RS-485 Termination, 24 troubleshooting / technical support, 118 Safe Fkeys Mode, 64 Troubleshooting Checklist (serial port – MJ1) safety / compliance, 10 Programming, 119 Safety Warnings, Guidelines, 10 Troubleshooting Checklist (USB Port - Mini B) Screen Brightness, 82 Programming, 119 Screen Saver, 82 Troubleshooting Checklist (Ethernet port Seet Serial Ports, 65 Programming), 119 Two-Point Ground Connection Test, 22 Serial Comm Cscape Programming, 25 Types of Registers, 83 Downloadable Protocols, 25 Typical Output Wiring, 40 Ladder-Controlled, 25 Typical Screen Jump Object, 76 Overview, 24 Universal Analog Inputs, 44, 45 USB, 14, 15, 27, 88, 89, 119 Ports, 24 **SERIAL COMMUNICATIONS**, 24 User Interface Set Beeper, 67 Ladder Based Navigation, 77 Set Network ID, 60, 94, 95 Screen Navigation, 76 Set Screen, 67 User Interface Overview, 74 Set Time/Date, 66 Using Removable Media to View and Capture Solid-State Digital Outputs, 40 Screens, 36 sourcing, 40, 43 View Battery Status Screen, 117 stepper, 47, 55 View Diags, 62 stop state, 41, 42 View I/O Slots, 63 Sub-Menus, 58 View Protocols, 64 System Menu View Status, 61 Details, 60 Visual Overview of Types of Devices that can be Navigate / Edit, 58 connected to XL+OCS, 13 System Menu (XL+) Screenshot, 58 Visual Overview of XL+ and Topics, 12 **SYSTEM SETTINGS AND ADJUSTMENTS**, 58 Where to Find Information, 12 Sytem Menu Wiring & Dip Switches, 24 Overview, 58 XL Series COM Options, 32 Table of Contents, 4 XL+ Dimensions, 19 target ID, 95 XL+ I/O Cover Photograph, 38 XL+ I/O Cover Removed (sample I/O board, 39 **Target ID**, 94, 95 target indicator, 94, 95, 96 XL+ Manual PREFACE, 2 Technical Support, 2, 15, 42, 116, 118, 121 XL+ OCS Accessories, 15 Contacts, 121 XL+ OCS Dimensions, 19 Testing for Good Ground, 22 XL+ OCS Mounting Orientation, 18

XMC, 32

Index of Figures & Tables

- Figure 2.1—Overview of the XL+, 12
- Figure 2.2—Visual Overview of Types of Devices that can be connected to XL+OCS, 13
- Figure 3.1—Panel Mounting of an XL+ Series OCS, 16
- Figure 3.2—Perimeter Set Studs, 17
- Figure 3.3—XL+ OCS with Mounting Clips, 18
- Figure 3.4—Orientation of XL+ OCS, 18
- Figure 3.5—Panel Cutout Tolerances, 19
- Figure 3.6—XL+ OCS Dimensions, 20
- Figure 4.1—Two-Point Ground Connection Test, 22
- Figure 4.2—Power Connector (Primary Power Port), 23
- Figure 4.3—Primary Power Port As Viewed Looking at the XL+ OCS, 23
- Figure 5.1—Wiring & Dip Switches, 24
- Figure 6.1—CAN1 & CAN2 Connector Locations, 26
- Figure 6.2—CAN1 / CAN2 Port Pins, 26
- Figure 7.1—Hardware Configuration Dialog, 29
- Figure 7.2—Ethernet Module Configuration, 30
- Figure 9.1—Removable Memory Card Slot Photograph, 35
- Figure 9.2—Removable Media Manager Submenu, 36
- Figure 10.1—Removing the I/O Cover, 39
- Figure 10.2—XL+ I/O Cover Removed (sample I/O board) Photograph, 40
- Figure 10.3—Jumpers Example, 40
- Figure 10.4—Typical Output Wiring, 41
- Figure 10.5—Relay Fusing, 43
- Figure 10.6—Positive and Negative Inputs, 44
- Figure 10.7—Analog input tranzorb troubleshooting, 45
- Figure 11.1 & Figure 11.2—Pulse Width Measurements, High & Low, 51
- Figure 11.3 & Figure 11.4 Period Measurement, Rising Edges & Falling Edges, 52
- Figure 11.5—Quadrature, 52
- Figure 11.6 & Figure 11.7—PWM, Two Parameters
- Duty Cycle and Frequency, 56
- Figure 12.1—System Menu (XL+) Screenshot, 60
- Figure 13.1—Example Screen, 76
- Figure 13.2—Alpha-numeric Keypad and ASCII Keypad, 77
- Figure 13.3—Typical Screen Jump Object, 78
- Figure 13.4—Force and Switch Coils in Ladder Programming, 79
- Figure 13.5—Alarm Object, 80
- Figure 13.6—Alarm Viewer, 81
- Figure 13.7—Removable Media Object, 82
- Figure 13.8—Removable media viewer, 82
- Figure 13.9—Example application segment for safe removal of removable media, 83
- Figure 15. 1—Cscape Status Bar, 90
- Figure 15. 2—USB Programming Connector, 91
- Figure 15. 3 Hardware Wizard Screenshots, 93
- Figure 15. 4 Cscape Connection Wizard Screenshots, 93
- Figure 15. 5 Cscape
 - Alternative Connection Method Screenshot, 94
- Figure 15. 6 Add Target Screenshot in Cscape, 95
- Figure 15. 7 Cscape

Add Target, 96

- Figure 15. 8- Digital Input / HSC Configuration Dialog, 100
- Figure 15. 9—Digital Input / HSC Configuration Dialog, 102
- Figure 15.10—Digital Output / PWM Configuration Dialog, 103
- Figure 15.11—Analog Input Configuration Dialog, 104
- Figure 15.12 Advanced Math Functions Screenshot, 105
- Figure 15.13—Analog Output Configuration Dialog, 106
- Figure 16.1—Fail-Safe System Menu, 107
- Figure 16.2—Backup / Restore Data, 108
- Figure 16.3—Backup Registers, 108
- Figure 16.4—Restore OCS Data, 109
- Figure 16.5—Clear Backup Data, 110
- Figure 16.6—Flow Chart for Automatic Restore, 111
- Figure 16.7—AutoLoad Menu, 112
- Figure 16.8—Flow Chart for AutoLoad, 113
- Figure 16.9—AutoRun Menu, 114
- Figure 17.1—System Menu, 115
- Figure 17.2—Clone Unit Menu before Cloning, 115
- Figure 17.3—Clone Unit Confirm Screen, 116
- Figure 17.4—Clone Unit Files, 116
- Figure 17.5—Cloning Status, 117
- Figure 17.6—System Menu, 118
- Figure 17.7—Clone Unit Menu after Cloning, 118
- Figure 17.8—Load Clone Confirm Screen, 118
- Figure 18.1—View Battery Status Screen, 121
- Table 2.1—XL+ OCS Accessories, 15
- Table 2.2—OCS Reference Document Numbers, 15
- Table 3.1—Minimum Clearance Requirements for Panel Box and Doors, 20
- Table 4.1—Primary Power Port Pins, 23
- Table 7.1—Ethernet Module Protocols & Features, 28
- Table 7.2—Ethernet Module Specifications, 28
- Table 7.3—Ethernet Status Word Register Format, 31
- Table 8.1—Index of Figures & Tables, 34
- Table 9.1—Filename Special Symbols, 38
- Table 9.2—RM Status Values, 38
- Table 10.1—I/O and Model Overview, 41
- Table 11.1—Glossary of High Speed I/O Terms, 49
- Table 11.4—HSC Functions Register Map, 55
- Table 11.6—HSC Output Functions Register Map, 59
- Table 14.1--Types of Registers, 85
- Table 14.2 & Table 14.3—Useful %S and %SR registers, 85
- Table 14.3—Register Map for XL+ OCS I/O, 88
- Table 14.4—Resource Limits, 88
- Table 15.1—Communication Configuration Dialog, 97
- Table 19.1—Cscape Target & Local Numbers, 123
- Table 19.2—Removable Media Troubleshooting, 126